Skip to main content
Log in

Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Halobacterium species display a variety of responses to light, including phototrophic growth, phototactic behavior, and photoprotective mechanisms. The complete genome sequence of Halobacterium species NRC-1 (Proc Natl Acad Sci USA 97: 12176–12181, 2000), coupled with the availability of a battery of methods for its analysis makes this an ideal model system for studying photobiology among the archaea. Here, we review: (1) the structure of the 2.57 Mbp Halobacterium NRC-1 genome, including a large chromosome, two minichromosomes, and 91 transposable IS elements; (2) the purple membrane regulon, which programs the accumulation of large quantities of the light-driven proton pump, bacteriorhodopsin, and allows for a period of phototrophic growth; (3) components of the sophisticated pathways for color-sensitive phototaxis; (4) the gas vesicle gene cluster, which codes for cell buoyancy organelles; (5) pathways for the production of carotenoid pigments and retinal, (6) processes for the repair of DNA damage; and (7) putative homologs of circadian rhythm regulators. We conclude with a discussion of the power of systems biology for comprehensive understanding of Halobacterium NRC-1 photobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annu Rev Microbiol 52: 629–659

    Article  Google Scholar 

  • Baliga NS and DasSarma S (1999) Saturation mutagenesis of the TATA box and upstream activator sequence in the haloarchaeal bop gene promoter. J Bacteriol 181: 2513–2518

    PubMed  CAS  Google Scholar 

  • Baliga NS and DasSarma S (2000) Saturation mutagenesis of the haloarchaeal bop gene promoter: Identification of DNA supercoiling sensitivity sites and absence of TFB recognition element and UAS enhancer activity. Mol Microbiol 36: 1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, Goo YA, Ng WV, Hood L, Daniels CJ, and DasSarma S (2000) Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors? Mol Microbiol 36: 1184–1185

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, Kennedy SP, Ng WV, Hood L and DasSarma S (2001) Genomic and genetic dissection of an archaeal regulon. Proc Natl Acad Sci USA 98: 2521–2525

    Article  PubMed  CAS  Google Scholar 

  • Bayley ST and Morton RA (1978) Recent developments in the molecular biology of extremely halophilic bacteria. CRC Crit Rev Microbiol 6: 151–205

    PubMed  CAS  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN and DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902–1906

    Article  PubMed  Google Scholar 

  • Béjà O, Spudich EN, Spudich JL, Leclerc Mand DeLong EF (2001) Proteorhodopsin phototrophy in the ocean: occurrence, variation and niche adaptation. Nature, 411: 786–789

    Article  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ and Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284: 760–765

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FX and Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Phys Plant Mol Biol 49: 557–583

    Article  CAS  Google Scholar 

  • DasSarma S and Arora P (1997) Genetic analysis of the gas vesicle gene cluster in haloarchaea. FEMS Microbiol Lett 153: 1–10

    Article  CAS  Google Scholar 

  • DasSarma S and Arora P (1999) Halophiles. Encyclopedia of Life Sciences (Embryonic ELS-Web published). Macmillan Press, New York

    Google Scholar 

  • DasSarma S, Arora P, Lin F, Molarini E, and Yin LR-S (1994) Wildtype gas vesicle formation requires at least ten genes in the gvp gene cluster of Halobacterium halobium plasmid pNRC100. J Bacteriol 176: 7646–7652

    PubMed  CAS  Google Scholar 

  • DasSarma S, Robb FT, Place AR, Sowers KR, Schreier HJ and Fleischmann EM (1995) Archaea: A Laboratory Manual - Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • DasSarma S, Halladay J, and Ng W(1999) Recombinant vector and process for cell flotation. US Patent #6,008,051

  • Gropp F and Betlach MC (1994) The bat gene of Halobacterium halobium encodes a trans-acting oxygen inducibility factor. ProcNatl Acad Sci USA 91: 5475–5479

    Google Scholar 

  • Gropp F, Gropp R and Betlach MC (1995) Effects of upstream deletions on light-and oxygen-regulated bacterio-opsin gene expression in Halobacterium halobium. Mol Microbiol 16: 357–364

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber, SA, Turecek F, Gelb MH and Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17: 994–999

    Article  PubMed  CAS  Google Scholar 

  • Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M and Todo T (2000) Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res 28: 2353–2362

    Article  PubMed  CAS  Google Scholar 

  • Hoff WD, Jung K-H and Spudich JL (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26: 223–258

    Article  PubMed  CAS  Google Scholar 

  • Hoot SB and Palmer JD (1994) Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J Mol Evol 38: 274–281

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng J, Bumgarner R, Goodlett D, Aebersold R and Hood L (2001) Integrated genomic and proteomic analysis of a systematically perturbed metabolic network. Science 292: 929–934

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH and Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53: 389–409

    Article  PubMed  CAS  Google Scholar 

  • Javor B (1989) Hypersaline Environments: Microbiology and Biogeochemistry. Springer-Verlag, Berlin/New York.

    Google Scholar 

  • Kamekura M and Kates M (1988) Lipids of halophilic archaebacteria. In: Rodriguez-Valera F (ed) Halophilic Bacteria, pp 25–66. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409–1412

    PubMed  CAS  Google Scholar 

  • Kennedy SP, Ng, W.V, Salzberg S, Hood, L and DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its environment through computational analysis of its genome Genome Res 11: 1641–1650.

    Article  PubMed  CAS  Google Scholar 

  • Krubasik P and Sandmann G (2000) A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 263: 423–432

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha SC, Kates M and Porter JW (1976) Enzymatic synthesis of C40 carotenes by cell-free preparation from Halobacterium cutirubrum. Can J Biochem 54: 816–823

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha SC, Kates, M and Weber HJ (1980) Exclusive formation of all-trans-phytoene by a colorless mutant of Halobacterium halobium. Can J Microbiol 26: 1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Leipe DD, Aravind L, Grishin NV and Koonin EV (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res 10: 5–16

    PubMed  CAS  Google Scholar 

  • Martinez-Garcia JF, Huq E and Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863

    Article  PubMed  CAS  Google Scholar 

  • McCready S (1996) The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium, and Haloferax volcanii. Mutat Res 364: 25–32

    PubMed  CAS  Google Scholar 

  • Ng W-L, Kothakota S and DasSarma S (1991) Structure of the large gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. J Bacteriol 173: 1958–1964

    PubMed  CAS  Google Scholar 

  • Ng W-L, Ciufo SA, Smith TM, Bumgardner RE, Baskin D, Faust J, Hall B, Loretz C, Seto J, Slagel J, Hood L and DasSarma S (1998) Snapshot of a large dynamic replicon from a halophilic Archaeon: Megaplasmid or minichromosome? Genome Res 8: 1131–1141

    PubMed  CAS  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KH, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L and DasSarma S (2000) From the cover: Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97: 12176–12181

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1999) Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS and Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95: 8660–8664

    Article  PubMed  CAS  Google Scholar 

  • Peck RF, DasSarma S and Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium with ura3 as a counterselectable marker. Mol Microbiol 35: 667–676

    Article  PubMed  CAS  Google Scholar 

  • Peck RF, Echavarri-Erasun C, Johnson EA, Ng WV, Kennedy SP, Hood L, DasSarma S and Krebs MP (2001) brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium. J Biol Chem 276: 5739–5744

    Article  PubMed  CAS  Google Scholar 

  • Perazzona B and Spudich JL (1999) Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum. J Bacteriol 181: 5676–5683

    PubMed  CAS  Google Scholar 

  • Rudolph J, Tolliday N, Schmitt C, Schuster SC and Oesterhelt D (1995) Phosphorylation in halobacterial signal transduction. EMBO J 14: 4249–4257

    PubMed  CAS  Google Scholar 

  • Rudolph J, Nordmann B, Storch KF, Gruenberg H, Rodewald K and Oesterhelt D (1996) A family of halobacterial transducer proteins. FEMS Microbiol Lett 139: 161–168

    PubMed  CAS  Google Scholar 

  • Schmidt A and Sandmann G (1990) In vitro characterization of two different Phycomyces blakesleeanus mutants with impaired phytoene desaturation. J Bacteriol 172: 4103–4105

    PubMed  CAS  Google Scholar 

  • Shand FR and Betlach MC (1991) Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light. J Bacteriol 173: 4692–4699

    PubMed  CAS  Google Scholar 

  • Spudich JL, Yang C-S, Jung K-H and Spudich EN (2000) Retinylidene proteins: structures and functions from archaea to human. Annu Rev Cell Dev Biol 16: 365–392

    Article  PubMed  CAS  Google Scholar 

  • Stoeckenius W and Bogomolni RA (1982) Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem 51: 587–616

    Article  PubMed  CAS  Google Scholar 

  • Sumper M, Reitmeier H and Oesterhelt D (1976) Biosynthesis of the purple membrane of halobacteria. Angew Chem Int Ed Engl 16: 187–194

    Article  Google Scholar 

  • von Lintig J and Vogt K (2000) Filling the gap in vitamin A research: Molecular identification of an enzyme cleaving β-carotene to retinal. J Biol Chem 275: 11915–11920

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58: 94–144

    PubMed  CAS  Google Scholar 

  • Woods WG and Dyall-Smith ML (1997) Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii. Mol Microbiol 23: 791–797

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Mori T and Johnson CH (2000) Circadian clock-protein expression in cyanobacteria: rhythms and phase-setting. EMBO J19: 3349–3357

    Article  PubMed  CAS  Google Scholar 

  • Yao VJ and Spudich JL (1992) Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci USA 89: 11915–11919

    Article  PubMed  CAS  Google Scholar 

  • Yang C-F and DasSarma S (1990) Transcriptional induction of purple membrane and gas vesicle synthesis in the archaebacterium Halobacterium halobium is blocked by a DNA gyrase inhibitor. J Bacteriol 172: 4118–4121

    PubMed  CAS  Google Scholar 

  • Yang C-F, Kim J-M, Molinari E and DasSarma S (1996) Genetic and topological analyses of the bop promoter of Halobacterium halobium: stimulation by DNA supercoiling and non-B-DNA structure. J Bacteriol 178: 840–845

    PubMed  CAS  Google Scholar 

  • Yeh KC, Wu SH, Murphy JT and Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Brooun A, McCandless J, Banda P and Alam M (1996) Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc Natl Acad Sci USA 93: 4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Zhang XN, Zhu J and Spudich JL (1999) The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Proc Natl Acad Sci USA 96: 857–862

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiladitya DasSarma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DasSarma, S., Kennedy, S.P., Berquist, B. et al. Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynthesis Research 70, 3–17 (2001). https://doi.org/10.1023/A:1013879706863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013879706863

Navigation