Space Science Reviews

, Volume 98, Issue 3–4, pp 223–328 | Cite as

Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma

  • T.B. Leyser

Abstract

A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospherically reflected pump wave. The numerous spectral features of these stimulated electromagnetic emissions (SEE) and their temporal evolution on a wide range of time scales are reviewed and related theoretical, numerical, and simulation results are discussed. On long (thermal) time scales the SEE constitutes a self-organization of the ionospheric plasma which depends on the interaction of nonlinear processes in a hierarchy of time scales in response to the electromagnetic pumping. Particularly, the appearance of the rich SEE spectrum is associated with the slow self-structuring of the plasma density into a spectrum of magnetic field-aligned density striations. The dependence of the SEE on electron gyroharmonic effects and the presence of density striations suggests that the existence of a magnetic field in the plasma is important for plasma turbulence to dissipate into non-thermal electromagnetic radiation during the long time quasi-stationary state of the turbulence evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antani, S. N., Kaup, D. J., and Rao, N. N.: 1996, ‘Excitation of Upper HybridWaves from Ordinary-Mode Electromagnetic Waves Via Density Gradient in the Ionosphere’, J. Geophys. Res. 101, 27035-27041.Google Scholar
  2. Antani, S. N., Rao, N. N., and Kaup, D. J.: 1991, ‘Direct Conversion of Ordinary Mode Into Upper Hybrid Wave by Density Irregularities in the Ionosphere’, Geophys. Res. Lett. 18, 2285-2288.Google Scholar
  3. Armstrong, W. T., Massey, R., Argo, P., Carlos, R., Riggin, D., Cheung, P.-Y., McCarrick, M., Stanley, J., and Wong, A. Y.: 1990, ‘Continuous Measurement of Stimulated Electromagnetic Emission Spectra from HF Excited Ionospheric Turbulence’, Radio Sci. 25, 1283-1289.Google Scholar
  4. Barr, R.: 1998, ‘The generation of ELF and VLF radio waves in the ionosphere using powerful HF transmitters’, Adv. Space Res. 21, 677-687.Google Scholar
  5. Basu, S., Costa, E., Livingston, R. C., Groves, K. M., Carlson, H. C., Chaturvedi, P. J., and Stubbe, P.: 1997, ‘Evolution of Subkilometer Scale Ionospheric Irregularities Generated by High-Power HF Waves’, J. Geophys. Res. 102, 7469-7475.Google Scholar
  6. Belenov, A. F., Erukhimov, L. M., Ponomarenko, P. V., and Yampolski, Y. M.: 1997, ‘Interaction between Artificial Ionospheric Turbulence and Geomagnetic Pulsations’, J. Atmospheric Solar Terrest. Phys. 59, 2367-2372.Google Scholar
  7. Belikovich, V. V., Benediktov, E. A., Grach, S.M., and Terina, G. I.: 1981, ‘Double Transformation of Waves by Scattering from Artificial Ionospheric Irregularities’, In: Proc. XIII Sovietunion Conf. on Radiowave Propagation, Vol. 1, Nauka, Moscow, pp. 107-109 (in Russian).Google Scholar
  8. Belyakova, V. N., Berezin, I. V., Vas'kov, V. V., Gruzdev, Y. V., Dimant, Y. S., Zyuzin, V. A., Kapustina, O. P., Komrakov, G. P., Lobachevskiy, L. A., Mikhaylova, G. A., Panchenko, V. A., Polimatidi, V. P., Prokof'ev, A. V., Puchkov, N. A., and Ryzhov, V. A.: 1991, ‘The Features of Excitation of Plasma Turbulence by a High-Power Radio Wave Field Under Even-Order Gyroresonance Conditions’, Geomagn. Aeron. 31, 367-370.Google Scholar
  9. Bernhardt, P. A., Tepley, C. A., and Duncan, L. M.: 1989, ‘Airglow Enhancements Associated with Plasma Cavities Formed During Ionospheric Heating Experiments’, J. Geophys. Res. 94, 9071-9092.Google Scholar
  10. Bernhardt, P. A., Wagner, L. S., Goldstein, J. A., Trakhtengerts, V. Y., Ermakova, E. N., Rapoport, V. O., Komrakov, G. P., and Babichenko, A. M.: 1994, ‘Enhancement of Stimulated Electromagnetic Emission During Two Frequency Ionospheric Heating Experiments’, Phys. Rev. Lett. 72, 2879-2882.Google Scholar
  11. Blagoveshchenskaya, N. F., Kornienko, V. A., Petlenko, A. V., Brekke, A., and Rietveld, M. T.: 1998a, ‘Geophysical Phenomena During an Ionospheric Modification Experiment at Tromsø, Norway’, Ann. Geophys. 16, 1212-1225.Google Scholar
  12. Blagoveshchenskaya, N. F., Kornienko, V. A., Rietveld, M. T., Thidé, B., Brekke, A., Moskvin, I. V., and Nozdrachev, S.: 1998b, ‘Stimulated Emissions Around Second Harmonic of Tromsø Heater Frequency Observed by Long-Distance Diagnostic HF Tools’, Geophys. Res. Lett. 25, 873-876.Google Scholar
  13. Boiko, G. N., Erukhimov, L. M., Zyuzin, V. A., Komrakov, G. P., Metelev, S. A., Mityakov, N. A., Nikonov, V. A., Ryzhov, V. A., Tokarev, Y. V., and Frolov, V. L.: 1985, ‘Dynamic Characteristics of Stimulated Radio Emission from Ionospheric Plasma’, Radiophys. Quantum Electron. 28, 259-268.Google Scholar
  14. Brändström, B. U. E., Leyser, T. B., Steen, Å., Rietveld, M. T., Gustavsson, B., Aso, T., and Ejiri, M.: 1999, ‘Unambiguous Evidence of HF Pump-Enhanced Airglow at Auroral Latitudes’, Geophys. Res. Lett. 26, 3561-3564.Google Scholar
  15. Bud'ko, N. I. and Vas'kov, V. V.: 1992, ‘Four-Wave Decay of a Powerful RadioWave UnderMultiple Electronic Gyroresonance Conditions’, Geomagn. Aeron. 32, 63-70.Google Scholar
  16. Cheung, P. Y., Mjølhus, E., DuBois, D. F., Pau, J., Zwi, H., and Wong, A. Y.: 1997, ‘Stimulated Radiation from Strong Langmuir Turbulence in Ionospheric Modification’, Phys. Rev. Lett. 79, 1273-1276.Google Scholar
  17. Cheung, P. Y., Wong, A. Y., Pau, J., and Mjølhus, E.: 1998, ‘Controlled Ionospheric Preconditioning and Stimulated Electromagnetic Radiation’, Phys. Rev. Lett. 80, 4891-4894.Google Scholar
  18. Cragin, B. L., Fejer, J. A., and Showen, R. L.: 1978, ‘Theory of Coherent Parametric Instabilities Excited by Two orMore PumpWaves’, Geophys. Res. Lett. 5, 183-186.Google Scholar
  19. Das, A. C. and Fejer, J. A.: 1979, ‘Resonance Instability of Small-Scale Field-Aligned Irregularities’, J. Geophys. Res. 84, 6701-6704.Google Scholar
  20. Derblom, H., Thidé, B., Leyser, T. B., Nordling, J. A., Hedberg, Å., Stubbe, P., Kopka, H., and Rietveld, M.: 1989, ‘Tromsø Heating Experiments: Stimulated Emission at HF Pump Harmonic and Subharmonic Frequencies’, J. Geophys. Res. 94, 10111-10120.Google Scholar
  21. Dimant, Y. S.: 1978, ‘Dissipative Parametric Instability in Strongly Ionized Plasmas’, Radiophys. Quantum Electron. 20, 1259-1267.Google Scholar
  22. Djuth, F. T., Gonzales, C. A., and Ierkic, H. M.: 1986, ‘Temporal Evolution of the HF-Enhanced Plasma Line in the Arecibo F Region’, J. Geophys. Res. 91, 12089-12107.Google Scholar
  23. Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S., and Rosenbluth, M. N.: 1974, ‘Parametric Instabilities of Electromagnetic Waves in Plasmas’, Phys. Fluids 17, 778-785.Google Scholar
  24. DuBois, D. F., Hanssen, A., Rose, H. A., and Russel, D.: 1993, ‘Space and Time Distribution of HF E4xcited Langmuir Turbulence in the Ionosphere: Comparison of Theory and Experiment’, J. Geophys. Res. 98, 17543-17567.Google Scholar
  25. DuBois, D. F., Rose, H. A., and Russel, D.: 1990, ‘Excitation of Strong Langmuir Turbulence in Plasmas Near Critical Density: Application to HF Heating of the Ionosphere’, J. Geophys. Res. 95, 21221-21272.Google Scholar
  26. Duncan, L. M. and Behnke, R. A.: 1978, ‘Observations of Self-Focusing Electromagnetic Waves in the Ionosphere’, Phys. Rev. Lett. 41, 998-1001.Google Scholar
  27. Dysthe, K. B., Leer, E., Trulsen, J., and Stenflo, L.: 1977, ‘Stimulated Brillouin Scattering in the Ionosphere’, J. Geophys. Res. 82, 717-718.Google Scholar
  28. Dysthe, K. B., Mjølhus, E., Pécseli, H., and Rypdal, K.: 1982, ‘Thermal Cavitons’, Physica Scripta T2/2, 548-559.Google Scholar
  29. Dysthe, K. B., Mjølhus, E., Pécseli, H. L., and Rypdal, K.: 1983, ‘A Thermal Oscillating Two-Stream Instability’, Phys. Fluids 26, 146-157.Google Scholar
  30. Ermakova, E. N. and Trakhtengerts, V. Y.: 1995, ‘Transition Radiation Mechanism for Broad-Band Component of Stimulated Electromagnetic Emission’, Adv. Space Res. 15 (12), 67-70.Google Scholar
  31. Erukhimov, L. M., Metelev, S. A., Myasnikov, E. N., Mityakov, N. A., and Frolov, V. L.: 1987, ‘Artificial Ionospheric Turbulence (Review)’, Radiophys. Quantum Electron. 31, 156-171.Google Scholar
  32. Farley, D. T., LaHoz, C., and Fejer, B. G.: 1983, ‘Studies of the Self-Focusing Instability at Arecibo’, J. Geophys. Res. 88, 2093-2102.Google Scholar
  33. Fejer, J. A.: 1977, ‘Stimulated Brillouin Scattering and Incoherent Backscatter’, Geophys. Res. Lett. 4, 289-290.Google Scholar
  34. Fejer, J. A., Cragin, B. L., and Showen, R. L.: 1978a, ‘Theory of Parametric Instability Excited by Two Pump Waves’, J. Plasma Phys. 19, 355.Google Scholar
  35. Fejer, J. A., Rinnert, K., and Woodman, R.: 1978b, ‘Detection of Stimulated Brillouin Scattering by the Jicamarca Radar’, J. Geophys. Res. 83, 2133-2136.Google Scholar
  36. Fejer, J. A., Gonzales, C. A., Ierkic, H.M., Sulzer, M. P., Tepley, C. A., Duncan, L. M., Djuth, F. T., Ganguly, S., and Gordon, W. E.: 1985, ‘Ionospheric Modification Experiments with the Arecibo Heating Facility’, J. Atmospheric Terrest. Phys. 47, 1165-1179.Google Scholar
  37. Fejer, J. A. and Kopka, H.: 1981, ‘The Effect of Plasma Instabilities on the Ionospherically Reflected Wave from a High-Power Transmitter’, J. Geophys. Res. 86, 5746-5750.Google Scholar
  38. Fejer, J. A., Sulzer, M. P., and Djuth, F. T.: 1991, ‘Height Dependence of the Observed Spectrum of Radar Backscatter from HF-Induced Ionospheric Turbulence’, J. Geophys. Res. 96, 15985-16008.Google Scholar
  39. Fialer, P. A.: 1974, ‘Field-Aligned Scattering from a Heated Region of the Ionosphere — Observations at HF and VHF’, Radio Sci. 9, 923-940.Google Scholar
  40. Frolov, V. L.: 1990, ‘A New Artificial Ionospheric Radio Emission Component’, Geomagn. Aeron. 30, 825-827.Google Scholar
  41. Frolov, V. L.: 1991, ‘Some Remarks on the Dynamics of Artificial Ionospheric Radio Emission’, In: Proc. III Suzdal URSI Symp. Modif. Ionos. Powerful Radio Waves, Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, IZMIRAN, Moscow, pp. 158-159.Google Scholar
  42. Frolov, V. L., Boiko, G. N., Metelev, S. A., and Sergeev, E. N.: 1994, ‘On the Study of Artifi-cial Ionospheric Turbulence by Means of Stimulated Electromagnetic Emissions’, Radiophys. Quantum Electron. 37, 593-603.Google Scholar
  43. Frolov, V. L., Grach, S. M., Erukhimov, L. M., Komrakov, G. P., Sergeev, E. N., Tide, B., and Carozzi, T.: 1996, ‘Peculiarities in the Evolution of the BUM of Stimulated Radio Emission of the Ionosphere’, Radiophys. Quantum Electron. 39, 241-254.Google Scholar
  44. Frolov, V. L., Ermakova, E. N., Erukhimov, L. M., Komrakov, G. P., Sergeev, E. N., and Stubbe, P.: 1997a, ‘A New Upshifted Spectral Stimulated Electromagnetic Emission Structure, Observed between Electron Cyclotron Harmonics’, Geophys. Res. Lett. 24, 1647-1650.Google Scholar
  45. Frolov, V. L., Erukhimov, L. M., Komrakov, G. P., Sergeev, E. N., Thidé, b., Bernhardt, P. A., Wagner, L. S., Goldstein, J. A., and Selcher, G.: 1997b, ‘On the Effect of BUM Generation Enhancement Revealed Using the Scheme of Additional Heating of Ionospheric Plasma’, Radiophys. Quantum Electron. 40, 371-386.Google Scholar
  46. Frolov, V. L., Erukhimov, L. M., Metelev, S. A., and Sergeev, E. N.: 1997c, ‘Temporal Behavior of Artificial Small-Scale Ionospheric Irregularities: Review of Experimental Results’, J. Atmospheric Solar Terrest. Phys. 59, 2317-2333.Google Scholar
  47. Frolov, V. L., Komrakov, G. P., Sergeev, E. N., Thidé, B., Waldenvik, M., and Veszelei, E.: 1997d, ‘Results of the Experimental Study of Narrow Continuum Features in Stimulated Ionospheric Emission Spectra’, Radiophys. Quantum Electron. 40, 731-744.Google Scholar
  48. Frolov, V. L., Erukhimov, L. M., Kagan, L.M., Komrakov, G. P., Sergeev, E. N., and Stubbe, P.: 1998, ‘Two-Component Nature of the Broad Up-Shifted Maximum in Stimulated Electromagnetic Emission Spectra’, Phys. Rev. Lett. 81, 1630-1633.Google Scholar
  49. Frolov, V. L., Kagan, L. M., and Sergeev, E. N.: 1999, ‘Review of SEE Features: Recent Results Obtained at the “Sura” Heating Facility’, Radiophys. Quantum Electron. 42, 635-640.Google Scholar
  50. Ganguly, S. and Gordon, W. E.: 1986, ‘Nonlinear Mixing in the Ionosphere’, Geophys. Res. Lett. 13, 503-505.Google Scholar
  51. Glanz, J., Goldman, M. V., Newman, D. L., and McKinstrie, C. J.: 1993, ‘Electromagnetic Instability and Emission from Counterpropagating Langmuir Waves’, Phys. Fluids 5, 1101-1114.Google Scholar
  52. Goodman, S.: 1991, ‘Stimulated Electromagnetic Emissions from Magnetized and Inhomogeneous Plasma’, J. Geophys. Res. 96, 21291-21298.Google Scholar
  53. Goodman, S., Thidé, B., and Erukhimov, L.: 1993, ‘A Combined Parametric and Conversion Mechanism for Upshifted Stimulated Electromagnetic Emissions’, Geophys. Res. Lett. 20, 735-738.Google Scholar
  54. Goodman, S., Usui, H., and Matsumoto, H.: 1994, ‘Particle-in-Cell (PIC) Simulations of Electromagnetic Emissions from Plasma Turbulence’, Phys. Plasmas 1, 1765-1767.Google Scholar
  55. Grach, S. M.: 1985, ‘Electromagnetic Radiation from Artificial Ionospheric Plasma Turbulence’, Radiophys. Quantum Electron. 28, 470-477.Google Scholar
  56. Grach, S. M.: 1999, ‘On Kinetic Effects in the Ionospheric F-Region Modified by Powerful Radio Waves’, Radiophys. Quantum Electron. 42, 572-588.Google Scholar
  57. Grach, S. M. and Trakhtengerts, V. Y.: 1976, ‘Parametric Excitation of Ionospheric Irregularities Extended Along the Magnetic Field’, Radiophys. Quantum Electron. 18, 951-957.Google Scholar
  58. Grach, S. M., Karashtin, A. N., Mityakov, N. A., Rapoport, V. O., and Trakhtengerts, V. Y.: 1978, ‘Parametric Interaction between Electromagnetic Radiation and Ionospheric Plasma’, Radiophys. Quantum Electron. 20, 1254-1258.Google Scholar
  59. Grach, S. M., Komrakov, G. P., Yurishchev, M. A., Thidé, B., Leyser, T. B., and Carozzi, T.: 1997, ‘Multi-Frequency Doppler Radar Observations of Electron Gyroharmonic Effects During Electromagnetic Pumping of the Ionosphere’, Phys. Rev. Lett. 78, 883-886.Google Scholar
  60. Grach, S.M., Mityakov, N. A., Rapoport, V. O., and Trakhtengerts, V. Y.: 1981, ‘Thermal Parametric Turbulence in a Plasma’, Physica D 2, 102-106.Google Scholar
  61. Grach, S. M., Shvarts, M. M., Sergeev, E. N., and Frolov, V. L.: 1998, ‘Broad Continuum Feature of Stimulated Electromagnetic Emission’, J. Atmospheric Solar Terrest. Phys. 60, 1233-1246.Google Scholar
  62. Grach, S. M., Thidé, B., and Leyser, T. B.: 1994, ‘Plasma Waves Near the Double Resonance Layer in the Ionosphere’, Radiophys. Quantum Electron. 37, 392-402.Google Scholar
  63. Gurevich, A. V., Carlson, H., Lukyanov, A. V., and Zybin, K. P.: 1997, ‘Parametric Decay of Upper Hybrid PlasmaWaves Trapped Inside Density Irregularities in the Ionosphere’, Phys. Lett. A 231, 97-108.Google Scholar
  64. Gurevich, A. V., Lukyanov, A. V., and Zybin, K. P.: 1996, ‘Anomalous Absorption of Powerful Radio Waves on the Striations Developed During Ionospheric Modification’, Phys. Lett. A 211, 363-372.Google Scholar
  65. Gurevich, A. V., Zybin, K. P., and Lukyanov, A. V.: 1995a, ‘Stationary Striations Developed in the Ionospheric Modification’, Phys. Rev. Lett. 75, 2622-2625.Google Scholar
  66. Gurevich, A. V., Zybin, K. P., and Lukyanov, A. V.: 1995b, ‘Stationary State of Isolated Striations Developed During Ionospheric Modification’, Phys. Lett. A 206, 247-259.Google Scholar
  67. Guzdar, P. N., Chaturvedi, P. K., Papadopoulos, K., Keskinen, M. J., and Ossakow, S. L.: 1996, ‘The Self-Focusing Instability in the Presence of Density Irregularities in the Ionosphere’, J. Geophys. Res. 101, 2453-2460.Google Scholar
  68. Guzdar, P. N., Chaturvedi, P. K., Papadopoulos, K., and Ossakow, S. L.: 1998, ‘The Thermal Self-Focusing Instability Near the Critical Surface in the High-Latitude Ionosphere’, J. Geophys. Res. 103, 2231-2237.Google Scholar
  69. Hagfors, T. and Gieraltowski, G. F.: 1972, ‘Stable Electron Density Fluctuations in a Plasma in the Presence of a High Frequency Electric Field’, J. Geophys. Res. 77, 6791-6803.Google Scholar
  70. Hagfors, T., Kofman, W., Kopka, H., Stubbe, P., and Ijnen, T.: 1983, ‘Observations of Enhanced Plasma Lines by EISCAT During Heating Experiments’, Radio Sci. 18, 861-866.Google Scholar
  71. Hedberg, A., Derblom, H., Thidé, B., Kopka, H., and Stubbe, P.: 1983, ‘Observations of HF Backscatter Associated with the Heating Experiment at Tromsø’, Radio Sci. 18, 840-850.Google Scholar
  72. Helliwell, R. A.: 1988, ‘VLF Wave Stimulation Experiments in the Magnetosphere from Siple Station, Antarctica’, Rev. Geophys. 26, 551-578.Google Scholar
  73. Honary, F., Robinson, T. R., Wright, D. M., Stocker, A. J., Rietveld, M. T., and McCrea, I.: 1999, ‘First Direct Observations of the Reduced Striations at Pump Frequencies Close to the Electron Gyroharmonics’, Ann. Geophys. 17, 1235-1238.Google Scholar
  74. Honary, F., Stocker, A. J., Robinson, T. R., Jones, T. B., and Stubbe, P.: 1995, ‘Ionospheric Plasma Response to HF Radio Waves Operating at Frequencies Close to the Third Harmonic of the Electron Gyrofrequency’, J. Geophys. Res. 100, 21489-21501.Google Scholar
  75. Huang, J. and Kuo, S. P.: 1994a, ‘Cyclotron Harmonic Effect on the Thermal Oscillating Two-Stream Instability in the High Latitude Ionosphere’, J. Geophys. Res. 99, 2173-2181.Google Scholar
  76. Huang, J. and Kuo, S. P.: 1994b, ‘A Theoretical Model for the Broad Upshifted Maximum in the Stimulated Electromagnetic Emission Spectrum’, J. Geophys. Res. 99, 19569-19576.Google Scholar
  77. Huang, J. and Kuo, S. P.: 1995, ‘A New Generation Mechanism for the Downshifted Peak in Stimulated Electromagnetic Emission Spectrum’, J. Geophys. Res. 100, 21433-21438.Google Scholar
  78. Huang, J., Kuo, S. P., and Zhou, H. L.: 1995, ‘A Theoretical Study on the Broad Symmetric Structure in the Stimulated Electromagnetic Emission Spectrum’, J. Geophys. Res. 100, 1639-1645.Google Scholar
  79. Huang, Z. H. and Fejer, J. A.: 1987, ‘Nonlinear Sidebands of Two PowerfulWaves at Closely Spaced Frequencies in the Ionosphere’, Radio Sci. 22, 663-670.Google Scholar
  80. Hussein, A. A. and Scales, W. A.: 1997, ‘Simulation Studies of Parametric Decay Processes Associated with Ionospheric Stimulated Radiation’, Radio Sci. 32, 2099-2107.Google Scholar
  81. Hussein, A. A., Scales, W. A., and Huang, J.: 1998, ‘Theoretical and Simulation Studies of Broad Up-Shifted Sideband Generation in Ionospheric Stimulated Radiation’, Geophys. Res. Lett. 25, 955-958.Google Scholar
  82. Inhester, B.: 1982, ‘Thermal Modulation of the Plasma Density in Ionospheric Heating Experiments’, J. Atmospheric Terrest. Phys. 44, 1049.Google Scholar
  83. Inhester, B., Das, A. C., and Fejer, J. A.: 1981, ‘Generation of Small-Scale Field-Aligned Irregularities in Ionospheric Heating Experiments’, J. Geophys. Res. 86, 9101-9106.Google Scholar
  84. Isham, B., Hoz, C. L., Kohl, H., Hagfors, T., Leyser, T. B., and Rietveld, M. T.: 1996, ‘Recent EISCAT Heating Results Using Chirped ISR’, J. Atmospheric Terrest. Phys. 58, 369-383.Google Scholar
  85. Isham, B., Kofman, W., Hagfors, T., Nordling, J., Thidé, B., LaHoz, C., and Stubbe, P.: 1990, ‘New Phenomena Observed by EISCAT During an RF Ionospheric Modification Experiment’, Radio Sci. 25, 251-262.Google Scholar
  86. Istomin, Y. N. and Leyser, T. B.: 1995, ‘Parametric Decay of an ElectromagneticWave Near Electron Cyclotron Harmonics’, Phys. Plasmas 2, 2084-2097.Google Scholar
  87. Istomin, Y. N. and Leyser, T. B.: 1997, ‘Small-Scale Magnetic Field-Aligned Density Irregularities Excited by a Powerful Electromagnetic Wave’, Phys. Plasmas 4, 817-828.Google Scholar
  88. Istomin, Y. N. and Leyser, T. B.: 1998, ‘Parametric Interaction of Self-Localized Upper Hybrid States in Quantized Plasma Density Irregularities’, Phys. Plasmas 5, 921-931.Google Scholar
  89. Istomin, Y. N. and Leyser, T. B.: 1999, ‘Quantization of Plasma Density Irregularities Under the Action of a Powerful Electromagnetic Wave: Spectrum of Upper Hybrid Oscillations Self Consistently Trapped in the Density Cavities’, Radiophys. Quantum Electron. 42, 641-650.Google Scholar
  90. Jones, T. B., Robinson, T., Stubbe, P., and Kopka, H.: 1983, ‘A Hysteresis Effect in the Generation of Field-Aligned Irregularities by a High-Power Radio Wave’, Radio Sci. 18, 835-839.Google Scholar
  91. Kagan, L. M. and Frolov, V. L.: 1996, ‘Significance of Field-Aligned Currents for F-Region Perturbations’, J. Atmospheric Terrest. Phys. 58, 1465-1474.Google Scholar
  92. Karashtin, A. N., Korobkov, Y. S., Frolov, V. L., and Tsimring, M. S.: 1986, ‘Stimulated Radio Emission of the Ionospheric Plasma at the Second Harmonic of the Pump Wave Frequency’, Radiophys. Quantum Electron. 29, 22-25.Google Scholar
  93. Kelley, M. C., Arce, T. L., Salowey, J., Sulzer, M., Armstrong, W. T., Carter, M., and Duncan, L.: 1995, ‘Density Depletions at the 10-m Scale Induced by the Arecibo Heater’, J. Geophys. Res. 100, 17367-17376.Google Scholar
  94. Kuo, S. P.: 1992, ‘Parametric Excitation of Electromagnetic Waves by Electron Bernstein Waves’, Phys. Fluids 4, 4094-4100.Google Scholar
  95. Larsson, J., Stenflo, L., and Tegeback, R.: 1976, ‘Enhanced Fluctuations in a Magnetized Plasma Due to the Presence of an Electromagnetic Wave’, J. Plasma Phys. 16, 37-45.Google Scholar
  96. Lee, M. C. and Kuo, S. P.: 1983, ‘Excitation of Upper-Hybrid Waves by a Thermal Parametric Instability’, J. Plasma Phys. 30, 463-478.Google Scholar
  97. Leyser, T. B.: 1989, ‘Stimulated Electromagnetic Emissions in the Ionosphere’, in IRF Sci. Rep. 198. S-755 91 Uppsala, Sweden, Swedish Institute of Space Physics, Uppsala Division.Google Scholar
  98. Leyser, T. B.: 1991, ‘Parametric Interaction between Upper Hybrid and Lower Hybrid Waves in Heating Experiments’, Geophys. Res. Lett. 18, 408-411.Google Scholar
  99. Leyser, T. B.: 1994, ‘Electromagnetic Radiation by Parametric Decay of Upper Hybrid Waves in Ionospheric Modification Experiments’, Phys. Plasmas 1, 2003-2011.Google Scholar
  100. Leyser, T. B. and Thidé, B.: 1988, ‘Effect of Pump-Induced Density Depletions on the Spectrum of Stimulated Electromagnetic Emissions’, J. Geophys. Res. 93, 8681-8688.Google Scholar
  101. Leyser, T. B., Thidé, B., Derblom, H., Hedberg, Å., Lundborg, B., Stubbe, P., and Kopka, H.: 1989, ‘Stimulated Electromagnetic Emission Near Electron Cyclotron Harmonics in the Ionosphere’, Phys. Rev. Lett. 63, 1145-1147.Google Scholar
  102. Leyser, T. B., Thidé, B., Derblom, H., Hedberg, Å., Lundborg, M., Stubbe, P., and Kopka, H.: 1990, ‘Dependence of Stimulated Electromagnetic Emission on the Ionosphere and PumpWave’, J. Geophys. Res. 95, 17233-17244.Google Scholar
  103. Leyser, T. B., Thidé, B., Goodman, S., Waldenvik, M., Veszelei, E., Grach, S. M., Karashtin, A. N., Komrakov, G. P., and Kotik, D. S.: 1992, ‘Narrow Cyclotron Harmonic Absorption Resonances of Stimulated Electromagnetic Emission in the Ionosphere’, Phys. Rev. Lett. 68, 3299-3302.Google Scholar
  104. Leyser, T. B., Thidé, B., Waldenvik, M., Goodman, S., Frolov, V. L., Grach, S. M., Karashtin, A. N., Komrakov, G. P., and Kotik, D. S.: 1993, ‘Spectral Structure of Stimulated Electromagnetic Emissions between Electron Cyclotron Harmonics’, J. Geophys. Res. 98, 17597-17606.Google Scholar
  105. Leyser, T. B., Thidé, B., Waldenvik, M., Veszelei, E., Frolov, V. L., Grach, S. M., and Komrakov, G. P.: 1994, ‘Downshifted Maximum Features in Stimulated Electromagnetic Emission Spectra’, J. Geophys. Res. 99, 19555-19568.Google Scholar
  106. Lobachevsky, L. A., Gruzdev, Y. V., Kim, V. Y., Mikhaylova, G. A., Panchenko, V. A., Polimatidi, V. P., Puchkov, V. A., Vas'kov, V. V., Stubbe, P., and Kopka, H.: 1992, ‘Observations of Ionospheric Modification by the Tromsø Heating Facility with the Mobile Diagnostic Equipment of IZMIRAN’, J. Atmospheric Terrest. Phys. 54, 75-85.Google Scholar
  107. Lundborg, B. and Thidé, B.: 1985, ‘Standing Wave Pattern of HF Radio Waves in the Ionospheric Reflection Region 1. General Formulas’, Radio Sci. 20, 947-958.Google Scholar
  108. Lundborg, B. and Thidé, B.: 1986, ‘Standing Wave Pattern of HF Radio Waves in the Ionospheric Reflection Region 1. Applications’, Radio Sci. 21, 486-500.Google Scholar
  109. Minkoff, J., Kugelman, P., and Weissman, I.: 1974, ‘Radio Frequency Scattering from a Heated Ionospheric, Vol. 1, VHF/UHF Field-Aligned and Plasma-Line Backscatter Measurements’, Radio Sci. 9, 941-955.Google Scholar
  110. Mironov, V. A., Sergeev, A. M., and Khimich, A. V.: 1988, ‘Resonant Emission of Electromagnetic Waves by Plasma Solitons’, Soviet Phys. JETP 67, 476-479 (English translation).Google Scholar
  111. Mjølhus, E.: 1983, ‘On Reflexion and Trapping of Upper-Hybrid Waves’, J. Plasma Phys. 29, 195-215.Google Scholar
  112. Mjølhus, E.: 1990, ‘On Linear Conversion in a Magnetized Plasma’, Radio Sci. 25, 1321-1339.Google Scholar
  113. Mjølhus, E.: 1993, ‘On the Small Scale Striation Effect in Ionospheric Radio Modification Experiments Near Harmonics of the Electron Gyrofrequency’, J. Atmospheric Terrest. Phys. 55, 907-918.Google Scholar
  114. Mjølhus, E.: 1997, ‘Parametric Instabilities of Trapped Upper-Hybrid Oscillations’, J. Plasma Phys. 58, 747-769.Google Scholar
  115. Mjølhus, E.: 1998, ‘Theoretical Model for Long Time Stimulated Electromagnetic Emission Generation in Ionospheric Radio Modification Experiments’, J. Geophys. Res. 103, 14711-14729.Google Scholar
  116. Mjølhus, E., Hanssen, A., and DuBois, D. F.: 1995, ‘Radiation from Electromagnetically Driven Langmuir Turbulence’, J. Geophys. Res. 100, 17527-17541.Google Scholar
  117. Muldrew, D. B.: 1988, ‘DuctModel Explanation of the Plasma Line Overshoot Observed at Arecibo’, J. Geophys. Res. 93, 7598-7604.Google Scholar
  118. Murtaza, G. and Shukla, P. K.: 1984, ‘Nonlinear Generation of Electromagnetic Waves in a Magnetoplasma’, J. Plasma Phys. 31, 423-436.Google Scholar
  119. Nordling, J. A., Hedberg, Å., Wannberg, G., Leyser, T. B., Derblom, H., Opgenoorth, H. J., Kopka, H., Kohl, H., Stubbe, P., Rietveld, M. T., and LaHoz, C.: 1988, ‘Simultaneous Bistatic European Incoherent Scatter UHF, 145-MHz Radar and Stimulated Electromagnetic Emission Observations During HF Ionospheric Modification’, Radio Sci. 23, 809-819.Google Scholar
  120. Ponomarenko, P. V., Leyser, T. B., and Thidé, B.: 1999, ‘New Electron Gyroharmonic Effects in HF Scatter from Pump-Excited Magnetic Field-Aligned Ionospheric Irregularities’, J. Geophys. Res. 104, 10081-10087.Google Scholar
  121. Rao, N. N. and Kaup, D. J.: 1990, ‘Upper Hybrid Mode Conversion and Resonance Excitation of Bernstein Modes in Ionospheric Heating Experiments’, J. Geophys. Res. 95, 17245-17252.Google Scholar
  122. Rao, N. N. and Kaup, D. J.: 1992, ‘Excitation of Electron Cyclotron Harmonic Waves in Ionospheric Modification Experiments’, J. Geophys. Res. 97, 6323-6341.Google Scholar
  123. Rietveld, M. T., Isham, B., Kohl, H., Hoz, C. L., and Hagfors, T.: 2000, ‘Measurements of HFEnhanced Plasma and Ion Lines at EISCAT with High Altitude Resolution’, J. Geophys. Res. 105, 7429-7439.Google Scholar
  124. Rietveld, M. T., Kohl, H., Kopka, H., and Stubbe, P.: 1993, ‘Introduction to Ionospheric Heating at Tromsø — I. Experimental Overview’, J. Atmospheric Terrest. Phys. 55, 577-599.Google Scholar
  125. Robinson, T. R.: 1989, ‘The Heating of the High Latitude Ionosphere by High Power Radio Waves’, Phys. Rep. 179, 79-209.Google Scholar
  126. Robinson, T. R., Honary, F., Stocker, A. J., Jones, T. B., and Stubbe, P.: 1996, ‘First EISCAT Observations of theModification of F-Region Electron Temperatures During RF Heating at Harmonics of the Electron Gyrofrequency’, J. Atmospheric Terrest. Phys. 58, 385-395.Google Scholar
  127. Scales, W. A., Cheng, K. T., and Srivastava, S.: 1997, ‘Simulation Studies of Processes Associated with Stimulated Electromagnetic Emissions (SEE) in the Ionosphere’, J. Atmospheric Solar Terrest. Phys. 97, 2373-2381.Google Scholar
  128. Sergeev, E. N., Boiko, G. N., and Frolov, V. L.: 1994, ‘Investigation of the Dynamics of HF Plasma Turbulence by Means of Artificial Ionospheric Radio Emission’, Radiophys. Quantum Electron. 37, 495-506.Google Scholar
  129. Sergeev, E. N., Frolov, V. L., Boiko, G. N., and Komrakov, G. P.: 1998, ‘Results of Investigation of the Langmuir and Upper-Hybrid Plasma Turbulence Evolution by Means of Stimulated Ionospheric Emission’, Radiophys. Quantum Electron. 41, 206-228.Google Scholar
  130. Sergeev, E. N., Frolov, V. L., Grach, S.M., and Shvarts, M. M.: 1995, ‘Investigations of Artificial HF Plasma Turbulence Features Using Stimulated Electromagnetic Emission’, Adv. Space Res. 15, 63-66.Google Scholar
  131. Sergeev, E. N., Frolov, V. L., Komrakov, G. P., Thidé, B., and Carozzi, T.: 1997, ‘Temporal Evolution of HF-Excited Plasma Waves, Measured at Different Pump Frequencies by Stimulated Electromagnetic Emissions (SEE)’, J. Atmospheric Solar Terrest. Phys. 59, 2383-2400.Google Scholar
  132. Sharma, R. P., Kumar, A., and Kumar, R.: 1993, ‘Excitations of Ion-Bernstein Waves in Ionospheric Modification Experiment’, Radio Sci. 28, 951-957.Google Scholar
  133. Showen, R. L., Duncan, L. M., and Cragin, B. L.: 1978, ‘Observations of Plasma Instabilities in a Multiple Pump Ionospheric Heating Experiment’, Geophys. Res. Lett. 5, 187.Google Scholar
  134. Showen, R. L. and Kim, D. M.: 1978, ‘Time Variations of HF-Induced Plasma Waves’, J. Geophys. Res. 83, 623-628.Google Scholar
  135. Shvarts, M. M. and Grach, S. M.: 1997, ‘Interaction of Upper and Lower Hybrid Waves and Generation of the Downshifted Maximum Feature of Stimulated Electromagnetic Emissions’, J. Atmospheric Solar Terrest. Phys. 59, 2421-2429.Google Scholar
  136. Shvarts, M. M., Grach, S. M., Frolov, V. L., and Sergeev, E. N.: 1994, ‘Modeling of the Wideband Component of Artificial Radioemission of the Ionosphere’, Radiophys. Quantum Electron. 37, 412-431.Google Scholar
  137. Shvarts, M. M., Grach, S. M., Sergeev, E. N., and Frolov, V. L.: 1995, ‘On the Generation of the Stimulated Electromagnetic Emission. The Computer Simulation Results’, Adv. Space Res. 15, 59-62.Google Scholar
  138. Stenflo, L.: 1979, ‘Stimulated Scattering of Large Amplitude Waves in Magnetized Plasmas’, EOS Trans. AGU 60, 595-596.Google Scholar
  139. Stenflo, L.: 1990a, ‘Stimulated Scattering of Large Amplitude Waves in the Ionosphere’, Physica Scripta, 166-169.Google Scholar
  140. Stenflo, L.: 1990b, ‘Theory for Stimulated Scattering of Electromagnetic Waves’, J. Atmospheric Terrest. Phys. 52, 495-499.Google Scholar
  141. Stenflo, L. and Shukla, P. K.: 1992, ‘Generation of Radiation by Upper-Hybrid Waves in Non-Uniform Plasmas’, Planetary Space Sci. 40, 473-476.Google Scholar
  142. Stenflo, L. and Yakimenko, I. P.: 1978, ‘Scattering of Electromagnetic Waves on Enhanced Fluctuations in Bounded Plasmas’, Phys. Scr. 18, 151-153.Google Scholar
  143. Stocker, A. J., Honary, F., Robinson, T. R., Jones, T. B., and Stubbe, P.: 1993, ‘Anomalous Absorption During Artificial Modification at Harmonics of the Electron Gyrofrequency’, J. Geophys. Res. 98, 13627-13634.Google Scholar
  144. Stubbe, P.: 1992, ‘Comment on “Stimulated Electromagnetic Emissions from Magnetized and Inhomogeneous Plasma” by S. Goodman’, J. Geophys. Res. 97, 15057-15058.Google Scholar
  145. Stubbe, P.: 1996, ‘Review of Ionospheric Modification Experiments at Tromsø’, J. Atmospheric Terrest. Phys. 58, 349-368.Google Scholar
  146. Stubbe, P. and Kopka, H.: 1983, ‘Summary of Results Obtained with the Tromsø Heating Facility’, Radio Sci. 18, 831-834.Google Scholar
  147. Stubbe, P. and Kopka, H.: 1990, ‘Stimulated Electromagnetic Emission in a Magnetized Plasma: A New Symmetric Spectral Feature’, Phys. Rev. Lett. 65, 183-186.Google Scholar
  148. Stubbe, P., Kohl, H., and Rietveld, M. T.: 1992, ‘Langmuir Turbulence and Ionospheric Modification’, J. Geophys. Res. 97, 6285-6297.Google Scholar
  149. Stubbe, P., Kopka, H., Lauche, H., Rietveld, M. T., Brekke, A., Holt, O., Jones, T. B., Robinson, T., Hedberg, Å., Thidé, B., Crochet, M., and Lotz, H. J.: 1982, ‘Ionospheric Modification Experiments in Northern Scandinavia’, J. Atmospheric Terrest. Phys. 44, 1025-1041.Google Scholar
  150. Stubbe, P., Kopka, H., Rietveld, M. T., Frey, A., Hoeg, P., Kohl, H., Nielsen, E., Rose, G., LaHoz, C., Barr, R., Derblom, H., Hedberg, Å., Thidé, B., Jones, T. B., Robinson, T., Brekke, A., Hansen, T., and Holt, O.: 1985, ‘Ionospheric Modification Experiments with the Tromsø Heating Facility’, J. Atmospheric Terrest. Phys. 47, 1151-1163.Google Scholar
  151. Stubbe, P., Kopka, H., Thidé, B., and Derblom, H.: 1984, ‘Stimulated Electromagnetic Emission: A New Technique to Study the Parametric Decay Instability in the Ionosphere’, J. Geophys. Res. 89, 7523-7536.Google Scholar
  152. Stubbe, P., Stocker, A. J., Honary, F., Robinson, T. R., and Jones, T. B.: 1994, ‘Stimulated Electromagnetic Emission and Anomalous HF Wave Absorption Near Electron Gyroharmonics’, J. Geophys. Res. 99, 6233-6246.Google Scholar
  153. Sulzer, M. P. and Fejer, J. A.: 1994, ‘Radar Spectral Observations of HF-Induced Ionospheric Langmuir Turbulence with Improved Range and Time Resolution’, J. Geophys. Res. 99, 15035-15050.Google Scholar
  154. Sulzer, M., Ierkic, H. M., and Showen, J. A. F. R. L.: 1984, ‘HF-Enhanced Ion and Plasma Line Spectra with Two Pumps’, J. Geophys. Res. 89, 6804-6812.Google Scholar
  155. Terina, G. I.: 1995, ‘Characteristics of Signals Scattered by Artificial Ionospheric Turbulence’, J. Atmospheric Terrest. Phys. 57, 273-278.Google Scholar
  156. Thidé, B.: 1984, ‘Stimulated Electromagnetic Emission and Nonlinear Wave-Wave Interactions in Ionospheric Heating Rxperiments’, in Proceedings of the International Conference on Plasma Physics, Vol. 1,Lausanne, Switzerland, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, p. 131.Google Scholar
  157. Thidé, B.: 1985, ‘Parametric and Related Non-Linear Wave-Wave Interactions in the Ionosphere’, J. Atmospheric Terrest. Phys. 47, 1257-1265.Google Scholar
  158. Thidé, B., Derblom, H., Hedberg, Å., Kopka, H., and Stubbe, P.: 1983, ‘Observations of Stimulated Electromagnetic Emissions in Ionospheric Heating Experiments’, Radio Sci. 18, 851-859.Google Scholar
  159. Thidé, B., Djuth, F. T., Leyser, T. B., and Ierkic, H. M.: 1995, ‘Evolution of Langmuir Turbulence and Stimulated Electromagnetic Emissions Excited with a 3-MHz Pump Wave at Arecibo’, J. Geophys. Res. 100, 23887-23899.Google Scholar
  160. Thidé, B., Hedberg, Å., Fejer, J. A., and Sulzer, M. P.: 1989, ‘First Observations of Stimulated Electromagnetic Emission at Arecibo’, Geophys. Res. Lett. 16, 369-372.Google Scholar
  161. Thidé, B., Kopka, H., and Stubbe, P.: 1982, ‘Observations of Stimulated Scattering of a Strong High Frequency Radio Wave in the Ionosphere’, Phys. Rev. Lett. 49, 1561-1564.Google Scholar
  162. Thome, G. D. and Blood, D. W.: 1974, ‘First Observations of RF Backscatter from Field-Aligned Irregularities Produced by Ionospheric Heating’, Radio Sci. 9, 917-921.Google Scholar
  163. Tidman, D. A.: 1960, ‘Radio Emission by Plasma Oscillations in Nonuniform Plasmas’, Phys. Rev. 117, 366-374.Google Scholar
  164. Trakhtengerts, V. Y.: 1983, ‘Turbulent Expansion During Parametric Plasma Heating’, JETP Lett. 38, 395-397.Google Scholar
  165. Tripathi, V. K. and Liu, C. S.: 1993, ‘O Mode Decay and Upshifted Electromagnetic Emissions Near Cyclotron Harmonics in the Ionosphere’, J. Geophys. Res. 98, 1719-1723.Google Scholar
  166. Ueda, H. O., Omura, Y., and Matsumoto, H.: 1998, ‘Computer Simulations for Direct Conversion of the HF ElectromagneticWave Into the Upper HybridWave in Ionospheric Heating Experiments’, Ann. Geophys. 16, 1251-1258.Google Scholar
  167. Vas'kov, V. V. and Gurevich, A. V.: 1976, ‘Nonlinear Resonant Instability of a Plasma in the Field of an Ordinary Electromagnetic Wave’, Soviet Phys. JETP 42, 91-97 (English translation).Google Scholar
  168. Vas'kov, V. V. and Gurevich, A. V.: 1984, ‘Amplification of Resonant Instability and Generation of Wideband Radio Emission by High-Power Radio Waves Incident on the Ionosphere’, Geomagn. Aeron. 24, 350-356.Google Scholar
  169. Wagner, L. S., Bernhardt, P. A., Goldstein, J. A., Selcher, C. A., Frolov, V. L., and Sergeev, E. N.: 1999, ‘Effect of Ionospheric Self-Conditioning and Preconditioning on the Broad Upshifted Maximum Component of Stimulated Electromagnetic Emission’, J. Geophys. Res. 104, 2573-2590.Google Scholar
  170. Waldenvik, M.: 1994, ‘The Dynamics of Electromagnetic Radiation from an HF Perturbed Space Plasma’, in IRF Sci. Rep. 216, S-755 91 Uppsala, Sweden, Swedish Institute of Space Physics, Uppsala Division.Google Scholar
  171. Wong, A. Y. and Taylor, R. J.: 1971, ‘Parametric Excitation in the Ionosphere’, Phys. Rev. Lett. 27, 644-647.Google Scholar
  172. Wong, A. Y., Carrol, J., Dickman, R., Harrison, W., Lum, W. H. B., McCarrick, M., Santoru, J., Schock, C., Wong, G., and Wuerker, R. F.: 1990, ‘High-Power Radiating Facility at the HIPAS Observatory’, Radio Sci. 25, 1269-1282.Google Scholar
  173. Wong, A. Y., Santoru, J., Darrow, C., Wang, L., and Roederer, J. G.: 1983, ‘Ionospheric Cavitons and Related Nonlinear Phenomena’, Radio Sci. 18, 815-830.Google Scholar
  174. Yeoman, T. K., Wright, D. M., Robinson, T. R., Davies, J. A., and Rietveld, M. T.: 1997, ‘High Spatial and Temporal Resolution Observations of an Impulse-Driven Field Line Resonance in Radar Backscatter Artificially Generated with the Tromsø Heater’, Ann. Geophys. 15, 634-644.Google Scholar
  175. Yerukhimov, L. M., Kovalev, V. Y., Kurakin, Y. P., Marchenko, S. F., Rubtsov, L. N., Sergeyev, Y. N., and Frolov, V. L.: 1987, ‘Study of the Interaction of Strong Radio Emission with the Ionospheric Plasma at Middle Latitudes’, Geomagn. Aeron. 27, 659-663.Google Scholar
  176. Zheleznyakov, V. V. and Zlotnik, E. Y.: 1975, ‘Cyclotron Wave Instability in the Corona and Origin of Solar Radio Emission with Fine Structure — I. Bernstein Modes and PlasmaWaves in a Hybrid Band’, Solar Phys. 44, 431-451.Google Scholar
  177. Zhou, H. L., Huang, J., and Kuo, S. P.: 1994, ‘Cascading of the Upper Hybrid/Electron Bernstein Wave in Ionospheric Heating Experiments’, Phys. Plasmas 1, 3044-3052.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • T.B. Leyser
    • 1
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A

Personalised recommendations