Skip to main content
Log in

The storm-time ring current

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this paper I am reviewing recent advances and open disputes in the study of the terrestrial ring current, with emphasis on its storm-time dynamics. The ring current is carried by energetic charged particles flowing toroidally around the Earth, and creating a ring of westward electric current, centered at the equatorial plane and extending from geocentric distances of about 2 R E to roughly 9 R E. This current has a permanent existence due to the natural properties of charged particles in the geospace environment, yet its intensity is variable. It becomes more intense during global electromagnetic disturbances in the near-Earth space, which are known as space (or magnetic or geomagnetic) storms. Changes in this current are responsible for global decreases in the Earth's surface magnetic field, which is the defining feature of geomagnetic storms. The ring current is a critical element in understanding the onset and development of space weather disturbances in geospace. Ring current physics has long been driven by several paradigms, similarly to other disciplines of space physics: the solar origin paradigm, the substorm-driver paradigm, the large-scale symmetry paradigm, the charge-exchange decay paradigm. The paper addresses these paradigms through older and recent important investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggson, T. L., and Heppner, J. P.: 1977, ‘Observations of Large Transient Magnetospheric Electric Fields’, J. Geophys. Res. 82, 5155-5164.

    Google Scholar 

  • Akasofu, S.-I. and Chapman, S.: 1961, ‘The Ring Current, Geomagnetic Disturbance, and the Van Allen Radiation Belts’, J. Geophys. Res. 66, 1321-1350.

    Google Scholar 

  • Akasofu, S.-I.: 1968, Polar and Magnetospheric Substorms, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Alexeev, I. I., Belenkaya, E. S., Kalegaev, V. V., Feldstein, Y. I., and Grafe, A.: 1996,’ Magnetic Storms and Magnetotail Currents’, J. Geophys. Res. 101, 7737-7747.

    Google Scholar 

  • Baker, D. N.: 2001, in I. A. Daglis (ed.), ‘Satellite Anomalies Due to Space Storms’, Space Storms and Space Weather Hazards, Kluwer Academic Publishers, Dordrecht (in press).

    Google Scholar 

  • Baker, D. N. et al.: 1997, ‘Recurrent Geomagnetic Storms and Relativistic Electron Enhancements in the Outer Magnetosphere: ISTP Coordinated Measurements’, J. Geophys. Res. 102, 14141.

    Google Scholar 

  • Blake, J. B., Kolanski, W. A., Fillius, R. W., and Mullen, E. G.: 1992, ‘Injection of Electrons and Protons with Energies of Tens of MeV into L < 3 on 24 March 1991’, Geophys. Res. Lett. 19, 821-824.

    Google Scholar 

  • Blanc, M., Horwitz, J. L., Blake, J. B., Daglis, I. A., Lemaire, J. F., Moldwin, M. B., Orsini, S., Thorne, R. M., and Wolfe, R. A.: 1999 in B. Hultqvist, M. Øieroset, G. Paschmann, and R. Treumann (eds.), ‘Source and Loss Processes in the Inner Magnetosphere’, Magnetospheric Plasma Sources and Losses, Space Science Series of the International Space Science Institute, Vol. 6, Kluwer Academic Publishers, Dordrecht, pp. 137-206.

    Google Scholar 

  • Bothmer, V. and Schwenn, R.: 1995, ‘The Interplanetary and Solar Causes of Major Geomagnetic Storms’, J. Geomagn. Geoelectr. 47, 1127-1132.

    Google Scholar 

  • Chapman, S. and Ferraro, V. C. A.: 1930, ‘A New Theory of Magnetic Storms’, Nature 126, 129-130.

    Google Scholar 

  • Chapman, S. and Ferraro, V. C. A.: 1931, ‘A New Theory of Magnetic Storms, I. The Initial Phase’, Terrest. Magn. Atmosph. Elec. 36, 77-97.

    Google Scholar 

  • Chapman, S.: 1962, ‘Earth Storms: Retrospect and Prospect’, J. Phys. Soc. Japan 17(A–I), 6-16.

    Google Scholar 

  • Chen, M. W., Lyons, L. R., and Schulz, M.: 2000, ‘Stormtime Ting-Current Formation: A Comparison Between Single-and Double-Dip Model Storms with Similar Transport Characteristics’, J. Geophys. Res. 106, 27 755.

    Google Scholar 

  • Christofilos, N. C.: 1959, ‘The Argus Experiment’, J. Geophys. Res. 64, 869-875.

    Google Scholar 

  • Daglis, I. A.: 1997a, in B. T. Tsurutani, J. Arballo, W. D. Gonzalez, and Y. Kamide (eds.), ‘The Role of Magnetosphere-Ionosphere Coupling in Magnetic Storm Dynamics’, Magnetic Storms, Geophys. Monogr. Ser. pp. 107-116, American Geophysical Union, Washington, DC.

    Google Scholar 

  • Daglis, I. A.: 1997b, ‘Terrestrial Agents in the Realm of Space Storms: Missions Study Oxygen Ions’, EOS Trans. AGU 78 (24), 245-251.

    Google Scholar 

  • Daglis, I. A.: 1999a, ‘Space Storms and Space Weather Hazards’, Proposal For an Advanced Study Institute to the NATO Scientific and Environmental Division, Athens.

  • Daglis, I. A.: 1999b, ‘Space Storms’, Human Potential Research Training Network Proposal RTN1-1999-00285, Athens.

  • Daglis, I. A.: 2000, ‘Intense Magnetic Storms: The Topic of Intense Scientific Discussion’, EOS Trans. AGU 81(6), 56.

    Google Scholar 

  • Daglis, I. A.: 2001, in I. A. Daglis (ed.), ‘Space Storms, Ring Current and Space-Atmosphere Coupling-Critical Elements of Space Weather’, Space Storms and Space Weather Hazards, Kluwer Academic Publishers, Dordrecht, pp. 1-42.

    Google Scholar 

  • Daglis, I. A. and Axford, W. I.: 1996, ‘Fast Ionospheric Response to Enhanced Activity in Geospace: Ion Feeding of the Inner Magnetotail’, J. Geophys. Res. 101, 5047-5065.

    Google Scholar 

  • Daglis, I. A., Paschalidis, N. P., Sarris, E. T., Axford, W. I., Kremser, G., Wilken, B., and Gloeckler, G.: 1991, in J. R. Kan, T. A. Potemra, S. Kokubun, and T. Iijiama (eds.), ‘Statistical Features of the Substorm Expansion-Phase as Observed by AMPTE/CCE’, Magnetospheric Substorms, Geophys. Monogr. Ser. Vol. 64, pp. 323-332, AGU, Washington, DC.

    Google Scholar 

  • Daglis, I. A., Livi, S., Sarris, E. T., and Wilken, B.: 1994, ‘Energy Density of Ionospheric and Solar Wind Origin Ions in the Near-EarthMagnetotail During Substorms’, J. Geophys. Res. 99, 5691-5703.

    Google Scholar 

  • Daglis, I. A., Axford, W. I., Livi, S., Wilken, B., Grande, M., and Søraas, F.: 1996, ‘Auroral Ionospheric Ion Feeding of the Inner Plasma Sheet During Substorms’, J. Geomagn. Geoelectr. 48, 729-739.

    Google Scholar 

  • Daglis, I. A., Kamide, Y., Kasotakis, G., Mouikis, C., Wilken, B., Sarris, E. T., and Nakamura, R.: 1998, in S. Kokubun and Y. Kamide (eds.), ‘Ion Composition in the Inner Magnetosphere: Its Importance and its Potential Role as a Discriminator Between Storm-Time Substorms and Non-Storm Substorms’, Fourth International Conference on Substorms (ICS-4), Terra/Kluwer Publications, Tokyo, pp. 767-772.

    Google Scholar 

  • Daglis, I. A., Baumjohann, W., Geiss, J., Orsini, S., Sarris, E. T., Scholer, M., Tsurutani, B. T., Vassiliadis, D.: 1999a, ‘Recent Advances, Open Questions and Future Directions in Solar-Terrestrial Research’, Phys. Chem. Earth 24, 5-28.

    Google Scholar 

  • Daglis, I. A., Kasotakis, G., Sarris, E. T., Kamide, Y., Livi, S., and Wilken, B.: 1999b, ‘Variations of the Ion Composition During a Large Magnetic Storm and Their Consequences’, Phys. Chem. Earth 24, 229-232.

    Google Scholar 

  • Daglis, I. A., Thorne, R. M., Baumjohann, W., Orsini, S.: 1999c, ‘The Terrestrial Ring Current: Origin, Formation and Decay’, Rev. Geophys. 37, 407-438.

    Google Scholar 

  • Daglis, I. A., Kamide, Y., Mouikis, C., Reeves, G. D., Sarris, E. T., Shiokawa, K., and Wilken, B.: 2000, ‘“Fine Structure” of the Storm-Substorm Relationship’, Adv. Space Res. 25(12), 2369-2372.

    Google Scholar 

  • Daglis, I. A. et al.: 2001, ‘Intense Storms: Open Disputes’, J. Geophys. Res. (submitted).

  • Davis, L. R. and Williamson, J. M.: 1963, ‘Low-Energy Trapped Protons’, Space Res. 3, 365-375.

    Google Scholar 

  • Delcourt, D. C.: 2001, ‘Particle Acceleration by Inductive Electric Fields in the Inner Magnetosphere’, J. Atmospheric Solar Terrest. Phys. (in press).

  • De Michelis, P., Daglis, I. A., and Consolini, G.: 1997, ‘Average Terrestrial Ring Current Derived from AMPTE/CCE-CHEMMeasurements’, J. Geophys. Res. 102, 14 103-14 111.

    Google Scholar 

  • Dessler, A. J. and Parker, E. N.: 1959, ‘Hydromagnetic Theory of Geomagnetic Storms’, J. Geophys. Res. 64, 2239-2252.

    Google Scholar 

  • Fitzgerald, G. F.: 1892, ‘Sunspots and Magnetic Storms’, The Electrician 30, 48.

    Google Scholar 

  • Fok, M.-C., Kozyra, J. U., Nagy, A. F., Ramussen, C. E., and Khazanov, V.: 1993, ‘Decay of Equatorial Ring Current Ions and Associated Aeronomical Consequences’, J. Geophys. Res. 98, 19 381-19 393.

    Google Scholar 

  • Fok, M.-C., Moore, T. E., Kozyra, J. U., Ho, G. C., and Hamilton, D. C.: 1995, ‘Three-Dimensional Ring Current Decay Model’, J. Geophys. Res. 100, 9619-9632.

    Google Scholar 

  • Fok, M.-C., Moore, T. E., and Delcourt, D; C.: 1999, ‘Modeling of Inner Plasma Sheet and Ring Current During Substorms’, J. Geophys. Res. 104, 14 557-14 569.

    Google Scholar 

  • Fok, M.-C., Moore, T. E., Slinker, S., Fedder, J. A., and Delcourt, D. C.: 2000, ‘Roles of Convection and Substorm Electric Fields on Ring Current Growth’, The First S-RAMP Conference Abstract Book, Sapporo, p. 169.

  • Gloeckler, G. and Hamilton, D. C.: 1987, ‘AMPTE Ion Composition Results’, Phys. Scripta T18, 73-84.

    Google Scholar 

  • Gonzalez, W. D. and Tsurutani, B. T.: 1987, ‘Criteria of Interplanetary Parameters Causing Intense Magnetic Storms (Dst < -100 nT)’, Planetary Space Sci. 35, 1101-1109.

    Google Scholar 

  • Gosling, J. T.: 1993, ‘The Solar Flare Myth’, J. Geophys. Res. 98, 18 937-18 949.

    Google Scholar 

  • Greenspan, M. E. and Hamilton, D. C.: 2000, ‘A Test of the Dessler-Parker-Sckopke Relation During Magnetic Storms’, J. Geophys. Res. 105, 5419-5430.

    Google Scholar 

  • Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Stüdemann, W., Wilken, B., and Kremser, G.: 1988, ‘Ring Current Development During the Great Geomagnetic Storm of February 1986’, J. Geophys. Res. 93, 14 343-14 355.

    Google Scholar 

  • Jordanova, V. K., Kozyra, J. U., Nagy, A. F., and Khazanov, G. V.: 1997, ‘Kinetic Model of the Ring Current — Atmosphere Interactions’, J. Geophys. Res. 102, 14 279-14 291.

    Google Scholar 

  • Jordanova, V. K., Farrugia, C. J., Thorne, R. M., Khazanov, G. V., Reeves, G. D., and Thomsen, M. F.: 2001, ‘Modeling Ring Current Proton Precipitation by Electromagnetic Ion Cyclotron Waves During the May 14–16, 1997 Storm’, J. Geophys. Res. 106, 7-22.

    Google Scholar 

  • Kalegaev, V. V., Alexeev, I. I., and Feldstein, Ya. I.: 2001, ‘The Geotail and Ring Current Dynamics Under Disturbed Conditions’, J. Atmospheric Solar Terrest. Phys. 63, 473-479.

    Google Scholar 

  • Kamide, Y.: 1992, 'Is Substorm Occurrence a Necessary Condition for a Magnetic Storm?, J. Geomagn. Geoelectr. 44, 109-117.

    Google Scholar 

  • Kamide, Y. and Allen, J.H.: 1997, in G. Heckman, K. Marubashi, M. A. Shea, D. F. Smart and R. Thompson (eds.), ‘Some Outstanding Problems of the Storm/Substorm Relationship’, Solar-Terrestrial PredictionsV, Comminications Research Laboratory, Tokyo, Japan, pp. 207-216.

    Google Scholar 

  • Kamide, Y., Baumjohann, W., Daglis, I. A., Gonzalez, W. D., Grande, M., Joselyn, J. A., McPherron, R. L., Phillips, J. L., Reeves, G. D., Rostoker, G., Sharma, A. S., Singer, H. J., Tsurutani, B. T., and Vasyliunas, V. M.: 1998a, ‘Current Understanding of Magnetic Storms: Storm/Substorm Relationships’, J. Geophys. Res. 103, 17 705-17 728.

    Google Scholar 

  • Kamide, Y., Yokoyama, N., Gonzalez, W. D., Tsurutani, B. T., Daglis, I. A., Brekke, A., and Masuda, S.: 1998b, ‘Two-Step Develoment of Geomagnetic Storms’, J. Geophys. Res. 103, 6917-6921.

    Google Scholar 

  • Kistler, L. M., Möbius, E., Klecker, B., Gloeckler, G., Ipavich, F. M., and Hamilton, D. C.: 1990, Spatial Variations in the Suprathermal Ion Distribution During Substorms in the Plasma Sheet’, J. Geophys. Res. 95, 18 871-18 885.

    Google Scholar 

  • Konradi, A., Semar, C. L., and Fritz, T. A.: 1976, ‘Injection Boundary Dynamics During a Geomagnetic Storm’, J. Geophys. Res. 81, 3851.

    Google Scholar 

  • Kozyra, J. U., Jordanova, V. K., Horne, R. B., and Thorne, R. M.: 1997, in B. T., Tsurutani, Arballo, J., Gonzalez, W. D., and Kamide, Y.: 1997, ‘Modeling of the Contribution of Electromagnetic Ion Cyclotron (EMIC)Waves to Storm-Time Ring Current Erosion’, Magnetic Storms, Geophys. Monogr. Ser., American Geophysical Union, Washington, DC, pp. 187-202.

    Google Scholar 

  • Kozyra, J. U., Jordanova, V. K., Borovsky, J. E., Thomsen, M. F., Knipp, D. J., Evans, D. S., McComas, D. J., and Cayton, T. E.: 1998, ‘Effects of a High-Density Plasma Sheet on Ring Current Development During the November 2–6, 1993, Magnetic Storm’, J. Geophys. Res. 103, 26 285-26 305.

    Google Scholar 

  • Kozyra, J. U., Liemohn, M.W., Clauer, C. R., Ridley, A. J., Thomsen, M. F., Borovsky, J. E., Roeder, J. L., Jordanova, V. K., and Gonzalez, W. D.: 2001, ‘Multi-Step Dst Development and Ring Current Composition Changes During the 4–6 June 1991 Magnetic Storm’, J. Geophys. Res. (in press).

  • Lemaire, J. F.: 2001, in I. A. Daglis (ed.), ‘From the Discovery of Radiation Belts to Space Weather Perspectives’, Space Storms and Space Weather Hazards, Kluwer Academic Publishers, Dordrecht, pp. 79-102.

    Google Scholar 

  • Lewis, Z. V., Cowley, S. W. H. and Southwood, D. J.: 1990, ‘Impulsive Energization of Ions in the Near-Earth Magnetotail During Substorms’, Planetary Space Sci. 38, 491-505.

    Google Scholar 

  • Li, X., Roth, I., Temerin, M., Wygant, J. R., Hudson, M. K., and Blake, J. B.: 1993, ‘Simulation of the Prompt Energization and Transport of Radiation Belt Particles During the March 24, 1991 SSC’, Geophys. Res. Lett. 20, 2423-2426.

    Google Scholar 

  • Liemohn, M. W., Kozyra, J. U., Jordanova, V. K., Khazanov, G. V., Thomsen, M. F., and Cayton, T. E.: 1999, ‘Analysis of Early Phase Ring Current Recovery Mechanisms During Geomagnetic Storms’, Geophys. Res. Lett. 26, 2845-2849.

    Google Scholar 

  • Liemohn, M. W., Kozyra, J. U., Thomsen, M. F., Roeder, J. L., Lu, G., Borovsky, J. E., and Cayton, T. E.: 2001, ‘The Dominant Role of the Asymmetric Ring Current in Producing the Storm-Time Dst *’, J. Geophys. Res. 106, 10 883-10 904.

    Google Scholar 

  • Lodge, O.: 1990, ‘Sunspots, Magnetic Storms, Comet Tails, Atmospheric Electricity and Aurorae’, The Electrician 46, 249.

    Google Scholar 

  • McPherron, R. L.: 1997, in B. T. Tsurutani, W. D. Gonzalez, Y. Kamide and J. K. Arballo (eds.), ‘The Role of Substorms in the Generation of Magnetic Storms’, Magnetic Storms, Geophys. Monograph 98, AGU, Washington, DC, pp. 131-147.

    Google Scholar 

  • Mauk, B. H.: 1986, ‘Quantitative Modeling of the Convection Surge Mechanism of Ion Acceleration’, J. Geophys. Res. 91, 13 423-13 431.

    Google Scholar 

  • Milillo, A., Orsini, S., and Daglis, I. A.: 2001, ‘Empirical Model of Proton Fluxes in the Equatorial Inner Magnetosphere. 1. Development’, J. Geophys. Res. 105 (in press).

  • Mitchell, D. G., Funsten, H. O., Gruntman, M., Hesse, M., Mauk, B. H., Meier, R. R., McComas, D. J., Roelof, E. C., and Scime, E. E.: 1998, in V. Angelopoulos and P. V. Panetta (eds.), ‘Multi-Point Magnetospheric Reconnaisance Imaging: Visualization of Ion Dynamics, Evolution, Origins, and Structure’, Science Closure and Enabling Technologies for Constellation Class Missions, University of Berkeley, Berkeley, pp. 44-50.

    Google Scholar 

  • Northrop, T. G.: The Adiabatic Motion of Charged Particles, Interscience, New York, 1963.

    Google Scholar 

  • Nosé, M., Ohtani, S., Takahashi, K., Lui, A. T. Y., McEntire, R. W., and Williams, D. J., Christon, S. P., and Yumoto, K.: 2001, ‘Ion Composition of the Near-Earth Plasma Sheet in Storm and Quiet Intervals: Geotail/EPIC Measurements’, J. Geophys. Res. 106, 8391-8404.

    Google Scholar 

  • Ohtani, S.-I., Nosé, M., Rostoker, G., Singer, H. J., Lui, A. T. Y., and Nakamura, M.: 2000, ‘Storm-Substorm Relationships: Near-Earth Dipolarization and the Recovery of Dst’, J. Geophys. Res., 21199-21210.

  • Parker, E. N.: ‘Newtonian Development of the Dynamical Properties of the Ionised Gases at Low Density’, Phys. Rev. 107, 924-933.

  • Roederer, J. G.: 1970, Dynamics of Geomagnetically Trapped Radiation, Springer-Verlag, Berlin.

    Google Scholar 

  • Rothwell, P. L., Block, L. P., Silevitch, M. B., and Fälthammar, C.-G.: 1998, ‘A New Model for Substorm Onsets: The Pre-Breakup and Triggering Regimes’, Geophys. Res. Lett. 15, 1279.

    Google Scholar 

  • Rowland, D. E. and Wygant, J. R.: 1998, ‘Dependence of the Large-Scale, Inner Magnetospheric Electric Field on Geomagnetic Activity’, J. Geophys. Res. 103, 14 959.

    Google Scholar 

  • Sckopke, N.: 1966, ‘A General Relation Between the Energy of Trapped Particles and the Disturbance Field Near the Earth’, J. Geophys. Res. 71, 3125-3130.

    Google Scholar 

  • Sheldon, R. B. and Spence, H. E.: 1998, in J. L. Horwitz, D. L., Gallagher and W. K. Peterson (eds.), ‘A New Magnetic Storm Model’, Geospace Mass and Energy Flow, Geophys. Monogr. Ser., Vol. 104, American Geophysical Union, Washington, pp. 349-354.

    Google Scholar 

  • Shiokawa, K. and Yumoto, K.: 1993, ‘Global Characteristics of Particle Precipitation and Field-Aligned Electron Acceleration During Isolated Substorms’, J. Geophys. Res. 98, 1359-1375.

    Google Scholar 

  • Singer, S. F.: 1956, ‘Trapped Orbits in the Earth's Dipole Field’, Bull. Am. Phys. Soc. Series II 1, A229.

    Google Scholar 

  • Singer, S. F.: 1957, ‘A New Model of Magnetic Storms and Aurorae’, EOS Trans. AGU 38, 175-190.

    Google Scholar 

  • Strangeway, R. J. and Johnson, R. G.: 1983, ‘Mass Composition of Substorm-Related Energetic Ion Dispersion Events’, J. Geophys. Res. 88, 2057-2064.

    Google Scholar 

  • Størmer, C.: The Polar Aurora, Oxford University Press, Oxford.

  • Sugiura, M.: 1964, ‘Hourly Values of the Equatorial Dst for IGY’, Ann. Int. Geophys. Year, Vol. 35, Pergamon Press, Oxford, pp. 945-948.

    Google Scholar 

  • Takahashi, S., Iyemori, T., and Takeda, M.: 1990, ‘A Simulation of the Storm-Time Ring Current’, Planetary Space Sci. 38, 1133.

    Google Scholar 

  • Thorne, R. M. and Horne, R. B.: 1997, ‘Modulation of Electromagnetic Ion Cyclotron Instability Due to Interaction with Ring Current O+ during Magnetic Storms’, J. Geophys. Res. 102, 14 155-14 163.

    Google Scholar 

  • Turner, N. E., Baker, D. N., Pulkkinen, T. I., McPherron, R. L.: 2000, ‘Evaluation of the Tail Current Contribution to Dst’, J. Geophys. Res. 105, 5431-5439.

    Google Scholar 

  • Van Allen, J. A., Ludwig, G. H., Ray, E. C., and McIlwain, C. E.: 1958, ‘Observations of High Intensity Radiation by Satellites 1958 Alpha and Gamma’, Jet Propul. 28, 588-592.

    Google Scholar 

  • Van Allen, J. A.: 1959, ‘The Geomagnetically Trapped Corpuscular Radiation’, J. Geophys. Res. 64, 1683-1689.

    Google Scholar 

  • Van Allen, J. A.: 1997, in C. S. Gillmor, and J. R. Spreiter (eds.), ‘Energetic Particles in the Earth's External Magnetic Field’, Discovery of the Magnetosphere, History of Geophysics 7, AGU, Washington D.C., pp. 235-264.

    Google Scholar 

  • Vassiliadis, D., Klimas, A. J., Uritsky, V., Fok, M.-C., Daglis, I. A., and Valdivia, I. A.: 2000, ‘Mapping Inner Magnetospheric Convection and Injections from Ground and Geosynchronous Measurements’, The First S-RAMP Conference Abstract Book, Sapporo, p. 180.

  • Williams, D. J.: 1985, ‘Exploration and Understanding in Space Physics’, Geophys. Res. Lett. 12, 303.

    Google Scholar 

  • Williams, D. J.: 1987, ‘Ring Current and Radiation Belts’, Rev. Geophys. 25, 570-578.

    Google Scholar 

  • Wygant, J., Rowland, D., Singer, H. J., Temerin, M., Mozer, F., and Hudson, M. K.: 1998, ‘Evidence on the Role of the Large Spatial Scale Electric Field in Creating the Ring Current’, J. Geophys. Res. 103, 29 527.

    Google Scholar 

  • Young, D. T., Balsiger, H., and Geiss, J.: 1982, ‘Correlations of Magnetospheric Ion Composition with Geomagnetic and Solar Activity’, J. Geophys. Res. 87, 9077-9096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daglis, I. The storm-time ring current. Space Science Reviews 98, 343–363 (2001). https://doi.org/10.1023/A:1013873329054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013873329054

Keywords

Navigation