Skip to main content
Log in

Small Polarons in Dense Lattice Systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

There is considerable evidence for the persistence of small polaron like entities in colossal magnetoresistance oxides, which are dense electronic systems with electron density n≲1 per site. This has brought up again the question of whether and how small (narrow band) polaronic states survive in a dense electronic system. We investigate this question in a simple one band Holstein polaron model, in which spinless electrons on a tight binding lattice cause an on-site lattice distortion x 0 . In the small polaron limit, each electron is localized, and the electron hopping tij is neglected. We develop a systematic approach in powers of tij, identify classical t0, quantum mean field t1, and quantum fluctuation t2 terms, and show that the last two terms are relatively small, even for dense systems, so long as the narrowed polaron bandwidth t*=t exp(−u) is much smaller than the Einstein phonon energy ħω 0 . (Here u=(x2 0 /2x2 zp) with xzp being the zero point phonon displacement.) The relevance of these results for CMR oxides is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Some review articles and books describing phenomena in this expanding field are the following: E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001). J. M. D. Coey, M. Viret, and S. von Molnar, Adv. in Phys. 48, 167 (1999). Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides ( eds. C. N. R. Rao and B. Raveau, World Scientific, Singapore, 1998). Colossal Magnetoresistance Oxides (ed. Y. Tokura, Gordon and Breach, London, 1999).

    Google Scholar 

  2. G.-M Zhao et al., cond-mat/9912355.

  3. G.-M. Zhao, K. Conder, H. Keller, and K. A. Müller, Nature 381, 676 (1996).

    Google Scholar 

  4. A. Anane et al., J. Phys.: Condensed Matter 7, 7015 (1995).

    Google Scholar 

  5. R. H. Heffner et al., Phys. Rev. Lett. 85, 3285 (2000).

    Google Scholar 

  6. M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285, 1540 (1999).

    Google Scholar 

  7. M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).

    Google Scholar 

  8. H. Röder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).

    Google Scholar 

  9. A. S. Alexandrov and P. E. Kornilovitch, Phys. Rev. Lett. 82, 807 (1999).

    Google Scholar 

  10. A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. Lett. 82, 141 (1999).

    Google Scholar 

  11. A. J. Millis, B. Shraiman, and R. Mueller, Phys. Rev. B 54, 5405 (1996); U. Yu and B. I. Min, cond-mat/9906263.

    Google Scholar 

  12. Further details are given in G. Venketeswara Pai and T. V. Ramakrishnan, to be published.

  13. G. Venketeswara Pai and T. V. Ramakrishnan, to be published.

  14. See for example, T. Holstein, Ann. Phys. 8, 325 (1959); ibid. 8, 343 (1959).

    Google Scholar 

  15. I. G. Lang and Yu. A. Firsov, Sov. Phys.-Solid State 5, 2049 (1964).

    Google Scholar 

  16. P. Gosar, J. Phys. C: Solid State 8, 3584 (1975). See also Y. Toyozawa, Prog. Theor. Phys. 26, 29 (1961).

    Google Scholar 

  17. V. Cataudella, G. De Filippis, and G. Iadonisi, Phys. Rev. B 60, 15163 (1999).

    Google Scholar 

  18. A. H. Romero, D. W. Brown, and K. Lindenberg, Phys. Rev. B 59, 13728 (1999).

    Google Scholar 

  19. A. A. Gogolin, Phys. Status Solidi B 109, 95 (1982).

    Google Scholar 

  20. K. H. Ahn and A. J. Millis, Phys. Rev. B 61, 13545 (2000); ibid. 64, 115103 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, T.V., Pai, G.V. Small Polarons in Dense Lattice Systems. Journal of Low Temperature Physics 126, 1055–1065 (2002). https://doi.org/10.1023/A:1013859028130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013859028130

Keywords

Navigation