Skip to main content
Log in

Minihypers and Linear Codes Meeting the Griesmer Bound: Improvements to Results of Hamada, Helleseth and Maekawa

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This article improves results of Hamada, Helleseth and Maekawa on minihypers in projective spaces and linear codes meeting the Griesmer bound.In [10,12],it was shown that any \(\left\{ {\sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i {\upsilon }_{i + 1} ,\sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i {\upsilon }_i ;t,q} } } \right\}\)-minihyper, with \(\sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i = h}\), where \(\left( {h - 1} \right)^2 < q\), is the disjoint union of \({{\varepsilon }_0 }\) points, \({{\varepsilon }_1 }\) lines,..., \({\varepsilon }_{t - 1} \left( {t - 1} \right)\)-dimensional subspaces. For q large, we improve on this result by increasing the upper bound on \(h:\left( 1 \right){\text{ for }}q = p^f ,p{\text{ prime, }}p > 3,{\text{ }}q\) non-square, to \(h \leqslant q^{6/9} /\left( {1 + q^{1/9} } \right),\left( 2 \right){\text{ for }}q = p^f\) non-square, \(p = 2,3,{\text{ to }}h \leqslant 2^{ - 1/3} q^{5/9} ,\left( 3 \right){\text{ for }}q = p^f\) square, \(p = 2,3,{\text{ to }}h \leqslant {\text{ min }}\left\{ {2\sqrt q - 1,2^{ - 1/3} q^{5/9} } \right\}\), and (4) for \(q = p^f\) square, p prime, p<3, to \(h \leqslant {\text{ min }}\left\{ {2\sqrt q - 1,q^{6/9} /\left( {1 + q^{1/9} } \right)} \right\}\). In the case q non-square, the conclusion is the same as written above; the minihyper is the disjoint union of subspaces. When q is square however, the minihyper is either the disjoint union of subspaces, or the disjoint union of subspaces and one subgeometry \(PG\left( {l,\sqrt q } \right){\text{ of }}PG\left( {t,q} \right)\). For the coding-theoretical problem, our results classify the corresponding \(\left[ {n = {\upsilon }_{t + 1} - \sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i {\upsilon }_{i + 1} ,k = t + 1,d = q^t - } \sum\nolimits_{i = 0}^{t - 1} {q^i {\varepsilon }_i ;q} } \right]\) codes meeting the Griesmer bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ball, Multiple blocking sets and arcs in finite planes, J. London Math. Soc., Vol. 54 (1996) pp. 581–593.

    Google Scholar 

  2. J. Barát and L. Storme, Multiple blocking sets in PG(n, q), n ≥ 3, Des. Codes Cryptogr., accepted.

  3. B. I. Belov, V. N. Logachev and V. P. Sandimirov, Construction of a class of linear binary codes achieving the Varshamov-Griesmer bound, Problems of Info. Transmission, Vol. 10 (1974) pp. 211–217.

    Google Scholar 

  4. A. Blokhuis, L. Storme and T. Szőnyi, Lacunary polynomials, multiple blocking sets and Baer subplanes, J. London Math. Soc., Vol. 60, No.2 (1999) pp. 321–332.

    Google Scholar 

  5. A. A. Bruen, Polynomial multiplicities over finite fields and intersection sets, J. Combin. Theory, Ser. A, Vol. 60, (1992) pp. 19–33.

    Google Scholar 

  6. J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop., Vol. 4 (1960) pp. 532–542.

    Google Scholar 

  7. N. Hamada, Characterization of minihypers in a finite projective geometry and its applications to error correcting codes, Bull. Osaka Women's Univ., Vol. 24 (1987) pp. 1–24.

    Google Scholar 

  8. N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math., Vol. 116 (1993) pp. 229–268.

    Google Scholar 

  9. N. Hamada, A survey of recent work on characterization of minihypers in PG(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. Syst. Sci., Vol. 18 (1993) pp. 161–191.

    Google Scholar 

  10. N. Hamada and T. Helleseth, A characterization of some q-ary codes (q > (h - 1)2, h ≥ 3) meeting the Griesmer bound, Math. Japonica, Vol. 38 (1993) pp. 925–940.

    Google Scholar 

  11. N. Hamada and T. Helleseth, Arcs, blocking sets and minihypers, Computers and Math., Vol. 39 (2000) pp. 159–168.

    Google Scholar 

  12. N. Hamada and T. Maekawa, A characterization of some q-ary codes (q > (h - 1)2, h ≥ 3) meeting the Griesmer bound: Part 2. Math. Japonica, Vol. 46 (1997) pp. 241–252.

    Google Scholar 

  13. N. Hamada and F. Tamari, On a geometrical method of construction of maximal t-linearly independent sets, J. Combin. Theory, Ser. A, Vol. 25 (1978) pp. 14–28.

    Google Scholar 

  14. G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control, Vol. 8 (1965) pp. 170–179.

    Google Scholar 

  15. L. Storme and Zs. Weiner, Minimal blocking sets in PG(n, q), n ≥ 3, Des. Codes Cryptogr., Vol. 21 (2000) pp. 235–251.

    Google Scholar 

  16. M. Sved, Baer subspaces in the n-dimensional projective space, Combinatorial Mathematics, Vol. X (Adelaide, 1982), pp. 375–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferret, S., Storme, L. Minihypers and Linear Codes Meeting the Griesmer Bound: Improvements to Results of Hamada, Helleseth and Maekawa. Designs, Codes and Cryptography 25, 143–162 (2002). https://doi.org/10.1023/A:1013852330818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013852330818

Navigation