Skip to main content
Log in

Effects of Water and Ion-Exchanged Counterion on the FTIR Spectra of ZSM-5. II. (Cu+–CO)-ZSM-5: Coordination of Cu+–CO Complex by H2O and Changes in Skeletal T–O–T Vibrations

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The 2157 cm−1 (strong) and 2108 cm−1 (very weak) ν(CO) IR bands due to Cu+–CO in ZSM-5 zeolite with 12C and 13C isotopes, respectively, are reversibly red-shifted by subsequent adsorption of H2O at 293 K. On the contrary, the locally perturbed internal (T–O–T) asymmetric stretching framework vibration [ν intas (TOT)(Cu+–CO)=965 cm−1] is reversibly blue-shifted. The courses of the band shifts revealed notable features. Charge transfers from water to Cu+ ions, changes in coordination spheres of Cu+(CO)(H2O) n aqua complexes and secondary (solvent-like) effects were considered to explain the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya and S. Kagawa, J. Chem. Soc. Chem. Commun. (1986) 1272.

  2. M. Iwamoto, H. Yahiro, Y. Mine and S. Kagawa, Chem. Lett. (1989) 213.

  3. M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, J. Phys. Chem. 95 (1991) 3727.

    Google Scholar 

  4. M. Iwamoto and H. Hamada, Catal. Today 10 (1991) 57.

    Google Scholar 

  5. M. Iwamoto, H. Yahiro, N. Mizuno, W.-X. Zhang, Y. Mine, H. Furukawa and S. Kagawa, J. Phys. Chem. 96 (1992) 9360.

    Google Scholar 

  6. Y. Li and W.K. Hall, J. Phys. Chem. 94 (1990) 6145.

    Google Scholar 

  7. Y. Li and W.K. Hall, J. Catal. 129 (1991) 202.

    Google Scholar 

  8. M. Shelef, Catal. Lett. 15 (1992) 305.

    Google Scholar 

  9. W.K. Hall and J. Valyon, Catal. Lett. 15 (1992) 311.

    Google Scholar 

  10. M. Shelef, Chem. Rev. 95 (1995) 209.

    Google Scholar 

  11. Y. Traa, B. Burger and J. Weitkamp, Micropor. Mesopor. Mater. 30 (1999) 3.

    Google Scholar 

  12. S. Sato, Y. Yu-U, H. Yahiro, N. Mizuno and M. Iwamoto, Appl. Catal. 70 (1991) L1.

    Google Scholar 

  13. K.C.C. Kharas, H.J. Robota and D.J. Liu, Appl. Catal. B 2 (1994) 225.

    Google Scholar 

  14. S. Matsumoto, K. Yokata, H. Doi, M. Kimura, K. Sekizawa and S. Kasahara, Catal. Today 22 (1994) 127.

    Google Scholar 

  15. J. Sárkány, J.L. d'Itri and W.M.H. Sachtler, Catal. Lett. 16 (1992) 241.

    Google Scholar 

  16. J. Sárkány and W.M.H. Sachtler, Zeolites 14 (1994) 7.

    Google Scholar 

  17. G.-D. Lei, B.L. Adelman, J. Sárkány and W.M.H. Sachtler, Appl. Catal. B 5 (1995) 245.

    Google Scholar 

  18. J. Sárkány and W.M.H. Sachtler, Stud. Surf. Sci. Catal. 95 (1995) 649.

    Google Scholar 

  19. T. Beutel, J. Sárkány, G.-D. Lei, J.Y. Yan and W.M.H. Sachtler, J. Phys. Chem. 100 (1996) 845.

    Google Scholar 

  20. J. Sárkány, J. Mol. Struct. 410-411 (1997) 95.

    Google Scholar 

  21. J. Sárkány, J. Mol. Struct. 410-411 (1997) 137.

    Google Scholar 

  22. J. Sárkány, J. Mol. Struct. 410-411 (1997) 145.

    Google Scholar 

  23. J. Sárkány, Appl. Catal. A 188 (1999) 369.

    Google Scholar 

  24. J. Sárkány, Phys. Chem. Chem. Phys. 1 (1999) 5151.

    Google Scholar 

  25. K.I. Hadjiivanov, M.M. Kantcheva and D.G. Klissurski, J. Chem. Soc. Faraday Trans. 92 (1996) 4595.

    Google Scholar 

  26. J. Datka, B. Gil, M. Kawałek and B. Staudte, J. Mol. Struct. 511-512 (1999) 133.

    Google Scholar 

  27. A. Zecchina, S. Bordiga, G.T. Palomino, D. Scarano, C. Lamberti and M. Salvaggio, J. Phys. Chem. B 103 (1999) 3833.

    Google Scholar 

  28. E. Broclawik, J. Datka, B. Gil and P. Kozyra, Phys. Chem. Chem. Phys. 2 (2000) 401.

    Google Scholar 

  29. F.A. Cotton and Wilkinson, Advances in Inorganic Chemistry, 4thEd. (Wiley, New York, 1980) p. 355.

    Google Scholar 

  30. P.A. Jacobs and H.K. Beyer, J. Phys. Chem. 83 (1979) 1174.

    Google Scholar 

  31. L.M. Kustov, V.B. Kazansky, S. Beran, L. Kubelková and P. Jirů, J. Phys. Chem. 91 (1987) 5247.

    Google Scholar 

  32. V.B. Kazansky, Kinet. Katal. 28 (1987) 557.

    Google Scholar 

  33. S. Bordiga, E.E. Platero, C.O. Areán, C. Lamberti and A. Zecchina, J. Catal. 137 (1992) 179.

    Google Scholar 

  34. A. Zecchina, S. Bordiga, G. Spoto, D. Scarano, G. Petrini, G. Leofanti, M. Padovan and C.O. Arean, J. Chem. Soc. Faraday Trans. 88 (1992) 2959.

    Google Scholar 

  35. C. Lamberti, S. Bordiga, M. Salvaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic and M. Bellatreccia, J. Phys. Chem. B 101 (1997) 344.

    Google Scholar 

  36. A. Zecchina, S. Bordiga, M. Salvaggio, G. Spoto, D. Scarano and C. Lamberti, J. Catal. 173 (1998) 540.

    Google Scholar 

  37. A. Jentys, G. Warecka, M. Derewinski and J.A. Lercher, J. Phys. Chem. 93 (1989) 4837.

    Google Scholar 

  38. A.G. Pelmenschikov, J.H.M.C. van Wolput, J. Jänchen and R.A. van Santen, J. Phys. Chem. 99 (1995) 3612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sárkány, J. Effects of Water and Ion-Exchanged Counterion on the FTIR Spectra of ZSM-5. II. (Cu+–CO)-ZSM-5: Coordination of Cu+–CO Complex by H2O and Changes in Skeletal T–O–T Vibrations. Topics in Catalysis 18, 271–277 (2002). https://doi.org/10.1023/A:1013850924694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013850924694

Navigation