Skip to main content
Log in

Random-Matrix Theory: Distribution of Mesoscopic Supercurrents Through a Chaotic Cavity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the distribution of the supercurrent through a chaotic quantum dot which is strongly coupled to two superconductors when the Thouless energy is large compared to the superconducting energy gap. The distribution function of the critical currents ρ(Ic) is known to be Gaussian in the limit of large channel number, N→∞. For N=1, we present an analytical low-temperature expression for this distribution function, valid both in the presence and in the absence of time-reversal symmetry. It connects directly the distribution of transmission coefficients to the distribution of critical currents. The case of arbitrary channel number (N≥2) is discussed numerically, and for small critical currents analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B.L. Al'tshuler, P.A. Lee, and R.A. Webb, eds., Mesoscopic Phenomena in Solids (North-Holland, Amsterdam, 1991), and references therein.

    Google Scholar 

  2. Y. Imry, Introduction to Mesoscopic Physics, (Oxford University Press, 1997).

  3. For an extended discussion of mesoscopic Josephson effects see: Proceedings of the NATO Advanced Research Workshop on Mesoscopic Superconductivity, eds. F.W.J. Hekking, G. Schön and D.V. Averin (1994, North-Holland, Amsterdam, or Physica 203B, Nos. 3 & 4).

    Google Scholar 

  4. B.L. Al'tshuler, Pis'ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985)].

    Google Scholar 

  5. P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

    Google Scholar 

  6. Muttalib, Pichard, and Stone, Phys. Rev. Lett. 59, 2475 (1987).

    Google Scholar 

  7. P.A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. (N.Y.) 181, 290 (1988).

    Google Scholar 

  8. Y. Imry, Europhys. Lett. 1, 249 (1986).

    Google Scholar 

  9. S. Washburn and R.A. Webb, Adv. Phys. 35, 375 (1986).

    Google Scholar 

  10. C.W.J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991) and Phys. Rev. Lett. 68, 1442 (E) (1992).

    Google Scholar 

  11. C.W.J. Beenakker, Three “universal” mesoscopic Josephson effects in: Proc. 14th Taniguchi Int. Symp. on 'Physics of Mesoscopic Systems', eds. H. Fukuyama and T. Ando (Springer, Berlin, 1992).

    Google Scholar 

  12. A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964); 49, 655 (1965) [Sov. Phys. JETP 19, 1228 (1964); 22, 455 (1966)].

    Google Scholar 

  13. C.W.J. Beenakker, Rev. Mod. Phys. 69, 3 (1997).

    Google Scholar 

  14. P.W. Brouwer and C.W.J. Beenakker, Chaos, Solitons ℰ Fractals 8, 1249 (1997).

    Google Scholar 

  15. H.D. Politzer, Phys. Rev. B 40, 11917 (1989).

    Google Scholar 

  16. E. Scheer, W. Belzig, Y. Naveh, M.H. Devoret, D. Esteve, and C. Urbina, Phys. Rev. Lett. 86, 284 (2001).

    Google Scholar 

  17. M.F. Goffman, R. Cron, A. Levy Yeyati, M.H. Devoret, D. Esteve, and C. Urbina, Phys. Rev. Lett. 85, 170 (2000).

    Google Scholar 

  18. M.C. Koops, G.V. van Duyneveldt and R. de Bruyn Ouboter, Phys. Rev. Lett. 77, 2542 (1996); mechanically controllable break junctions, which are indeed atomic-size quantum point contacts, were developed first by C.J. Muller, J.M. van Ruitenbeek and L.J. de Jongh, Physica 191C, 485 (1992).

    Google Scholar 

  19. S. Kirchner, J. Kroha, and E. Scheer, Generalized conductance sum rule in atomic break junctions in: Proc. of the NATO Advanced Research Workshop 'size dependent magnetic scattering', Pecs, Hungary, May 28–June 1, 2000, in press (Kluwer Academic Publishers, 2001); cond-mat/0010103.

  20. Th. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).

    Google Scholar 

  21. H.U. Baranger and P.A. Mello, Phys. Rev. Lett. 73, 142 (1994).

    Google Scholar 

  22. R.A. Jalabert, J.-L. Pichard, and C.W.J. Beenakker, Europhys. Lett. 27, 255 (1994).

    Google Scholar 

  23. K. Böttcher and T. Kopp, Phys. Rev. B 55, 11670 (1997).

    Google Scholar 

  24. K.K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

    Google Scholar 

  25. M.L. Goldberger and K.M. Watson, Collision Theory (John Wiley & Sons, 1964).

  26. E. Doron and U. Smilansky, Phys. Rev. Lett. 68, 1255 (1992).

    Google Scholar 

  27. W. Haberkorn, H. Knauer, and J. Richter, Phys. Status Solidi A 47, K161 (1978).

    Google Scholar 

  28. C.W.J. Beenakker, Phys. Rev. B 47, 15763 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garst, M., Kopp, T. Random-Matrix Theory: Distribution of Mesoscopic Supercurrents Through a Chaotic Cavity. Journal of Low Temperature Physics 126, 1305–1324 (2002). https://doi.org/10.1023/A:1013844019470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013844019470

Keywords

Navigation