Skip to main content
Log in

Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micron- and nanometer-sized aluminum particles were used as reinforcements to enhance the fracture toughness of a highly-crosslinked, nominally brittle, thermosetting unsaturated polyester resin. Both particle size and particle volume fraction were systematically varied to investigate their effects on the fracture behavior and the fracture toughness. It was observed that, in general, the overall fracture toughness increased monotonically with the volume fraction of aluminum particles, for a given particle size, provided particle dispersion and deagglomeration was maintained. The fracture toughness of the composite was also strongly influenced by the size of the reinforcement particles. Smaller particles led to a greater increase in fracture toughness for a given particle volume fraction. Scanning electron microscopy of the fracture surfaces was employed to establish crack front trapping as the primary extrinsic toughening mechanism. Finally, the effects of particle volume fraction and size on the tensile properties of the polyester-aluminum composite were also investigated. The measured elastic modulus was in accordance with the rule-of-mixtures. Meanwhile, the tensile strength was slightly reduced upon the inclusion of aluminum particles in the polyester matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. SULTAN and F. J. MCGARRY, Polymer Engineering and Science 13 (1973) 29.

    Google Scholar 

  2. T. T. WANG and H. M. J. ZUPKO, J. Appl. Polym. Sci. 26 (1981) 2391.

    Google Scholar 

  3. A. J. KINLOCH, S. J. SHAW, D. A. TOD and D. L. HUNSTON, Polymer 24 (1983) 1341.

    Google Scholar 

  4. G. A. CROSBIE and M. G. PHILLIPS, J. Mater. Sci. 20 (1985) 182.

    Google Scholar 

  5. A. F. YEE and R. A. PEARSON, ibid. 21 (1986) 2462.

    Google Scholar 

  6. J. S. ULLETT and R. P. CHARTOFF, Polymer Engineering and Science 35 (1995) 1086.

    Google Scholar 

  7. R. A. PEARSON and A. F. YEE, J. Mater. Sci. 24 (1989) 2571.

    Google Scholar 

  8. J. F. HWANG, J. A. MANSON, R. W. HERTZBERG, G. A. MILLER and L. H. SPERLING, Polymer Engineering Science 29 (1989) 1466.

    Google Scholar 

  9. C. B. BUCKNALL and I. K. PARTRIDGE, Polymer 24 (1983) 639.

    Google Scholar 

  10. A. J. KINLOCH, M. L. YUEN and S. D. JENKINS, J. Mater. Sci. 29 (1994) 3781.

    Google Scholar 

  11. J. H. HODGKIN, G. P. SIMON and R. J. VARLEY, Polymers For Advanced Technologies 9 (1998) 3.

    Google Scholar 

  12. R. A. PEARSON,Advances in Chemistry Series Vol. 233 (1993) 405.

    Google Scholar 

  13. J. SPANOUDAKIS and R. J. YOUNG, J. Mater. Sci. 19 (1984) 473.

    Google Scholar 

  14. A. MOLONEY, H. H. KAUSCH and H. R. STIEGER, ibid. 19 (1984) 1125.

    Google Scholar 

  15. M. HUSSAIN, A. NAKAHIRA, S. NISHIJIMA and K. NIIHARA, Materials Letters 27 (1996) 21.

    Google Scholar 

  16. A. G. EVANS, S. WILLIAMS and P. W. R. BEAUMONT, J. Mater. Sci. 20 (1985) 3668.

    Google Scholar 

  17. H. GLEITER, Acta Materialia 48 (2000) 1.

    Google Scholar 

  18. B. M. NOVAK, Advanced Materials 5 (1993) 422.

    Google Scholar 

  19. J. E. MARK, Polymer Engineering and Science 36 (1996) 2905.

    Google Scholar 

  20. A. OKADA, M. KAWASUMI, T. KURAUCHI and O. KAMIGAITO, Abstracts of Papers of The American Chemical Society 194 (1987).

  21. E. P. GIANNELIS, Applied Organometallic Chemistry 12(1011) (1998) 675.

    Google Scholar 

  22. P. C. LEBARON, Z. WANG and T. J. PINNAVAIA, Applied Clay Science 15(12) (1999) 11.

    Google Scholar 

  23. American Society of Testing and Materials, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials,” Annual Book of ASTM Standards, Designation D5045-99, 1999.

  24. T. L. ANDERSON, “Fracture Mechanics: Fundamentals and Applications” (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  25. J. E. SRAWLEY, International Journal of Fracture 12 (1976) 475.

    Google Scholar 

  26. F. F. LANGE, Phil. Magazine 22 (1970) 983. Received 16 January and accepted 28 August 2001 788

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.P., Zhang, M. & Chan, D. Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction. Journal of Materials Science 37, 781–788 (2002). https://doi.org/10.1023/A:1013844015493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013844015493

Keywords

Navigation