Skip to main content
Log in

Homogeneous Catalysis for the Production of Fine Chemicals. Palladium- and Nickel-Catalysed Aromatic Carbon–Carbon Bond Formation

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this article we describe our recent efforts in the area of palladium- and nickel-catalysed aromatic substitution reactions. Main focus is on low cost and low waste production methods. The use of aromatic carboxylic anhydrides in the Heck reaction leads to a waste-free protocol. In addition these reactions are easy to work up as no ligands or bases are used. For Heck reactions where substrates or products do not tolerate high temperatures we found that use of a bulky phosphoramidite (13b) as ligand for palladium leads to a very fast reaction at low temperatures. Recycle of palladium in ligand-free Heck and Suzuki reactions is easily accomplished by treating the palladium black that precipitates at the end of the reaction on a carrier material with a small excess of I2 prior to its re-use in the next run. Use of aryl chlorides in the palladium- and nickel-catalysed formation of biaryls can be accomplished by using the nickel-catalysed coupling with arylzinc chlorides. Better still, it was possible to make use of the arylgrignard and use a catalytic amount of ZnCl2. Whereas the strength of these aromatic substitution reactions lies in their broad tolerance of functional groups, one exception was the Sonogashira reaction on 3-bromoaniline. The problem was solved by making use of in situ catalytic protection of the NH2 group with benzaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tsuji, Palladium Reagents and Catalysts-Innovations in Organic Synthesis (Wiley, Chichester, 1995); Metal-Catalyzed Cross-Coupling Reactions, eds. F. Diederich and P.J. Stang (Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  2. J.G. de Vries, Canad. J. Chem. 79 (2001) 1086.

    Google Scholar 

  3. H. Geissler, in: Transition Metals for Organic Synthesis, Vol. 1, eds. M. Beller and C. Bolm (Wiley-VCH, Weinheim, 1998) p. 158.

    Google Scholar 

  4. R.A. Sheldon, J. Mol. Catal. A 107 (1996) 75.

    Google Scholar 

  5. J.B. Hendrickson, Acc. Chem. Res. 19 (1986) 274.

    Google Scholar 

  6. I.P. Beletskaya and A.V. Cheprakov, Chem. Rev. 100 (2000) 3009.

    Google Scholar 

  7. (a) W.A. Herrmann, C. Brossmer, C.-P. Reisinger, T.H. Riermeier, K. Öfele and M. Beller, Chem. Eur. J. 3 (1997) 1357; (b) B.L. Shaw, New J. Chem. (1998) 77; (c)M. Ohff, A. Ohff, M.E. van der Boom and D. Milstein, J. Am. Chem. Soc. 119 (1997) 11687; (d) M. Ohff, A. Ohff and D. Milstein, Chem. Commun. (1999) 357; (e) D.E. Bergbreiter, P.L. Osburn and Y.-S. Liu, J. Am. Chem. Soc. 121 (1999) 9531; (f) F. Miyazaki, K. Yamaguchi and M. Shibasaki, Tetrahedron Lett. 40 (1999) 7379; (g) A.S. Gruber, D. Zim, G. Ebeling, A.L. Monteiro and J. Dupont, Org. Lett. 2 (2000) 1287; (h) X. Gai, R. Grigg, M. Imran Ramzan, V. Sridharan, S. Collard and J.E. Muir, Chem. Commun. (2000) 2053; (i) D. Morales-Morales, R. Redón, C. Yung and C.M. Jensen, Chem. Commun. (2000) 1619; (j) S. Gibson, D.F. Foster, G.R. Eastham, R.P. Tooze and D.J. Cole-Hamilton, Chem. Commun. (2001) 779; (k) D.A. Albisson, R.B. Bedford and P.N. Scully, Tetrahedron. Lett. 39 (1998) 9793.

  8. M. Nowotny, U. Hanefeld, H. van Koningsveld and T. Maschmeyer, Chem. Commun. (2000) 1877; I.P. Beletskaya, A.N. Kashin, N.B. Karlstedt, A.V. Mitin, A.V. Cheprakov and G.M. Kazankov, J. Organomet. Chem. 622 (2001) 89.

  9. (a) M. Portnoy, Y. Ben-David and D. Milstein, Organometallics 12 (1993) 4734; (b) W.A. Herrmann, M. Elison, J. Fischer, C. Köcher and G.R.J. Artus, Angew. Chem. Int. Ed. Engl. 34 (1995) 2371; (c) M. Beller and A. Zapf, Synlett (1998) 792; (d) M.T. Reetz, G. Lohmer and R. Schwickardi, Angew. Chem. Int. Ed. Engl. 37 (1998) 481; (e) A.F. Litke and G.C. Fu, J. Org. Chem. 64 (1999) 10; (f) K.H. Shaughnessy, P. Kim and J.F. Hartwig. J. Am. Chem. Soc. 121 (1999) 2123.

  10. P.-W. Wang and M.A. Fox, J. Org. Chem 59 (1994) 5358; A. Mirza, M.S. Anson, K. Hellgardt, M.P. Leese, D.F. Thompson, L. Tonks and J.M.J. Williams, Org. Proc. Res. Dev. 2 (1998) 325; C.P. Mehnert, D.W. Weaver and J.Y. Ying, J. Am. Chem. Soc. 120 (1998) 12289; M.R. Buchmeiser and K. Wurst, J. Am. Chem. Soc. 121 (1999) 11101; L. Djakovitch, H. Heise and K Köhler, J. Organomet. Chem. 584 (1999) 16.

    Google Scholar 

  11. F. Zhao, B.M. Bhanage, M. Shirai and M. Arai, Chem. Eur. J. 6 (2000) 843.

    Google Scholar 

  12. M.S. Stephan, A.J.J.M. Teunissen, G.K.M. Verzijl and J.G. de Vries, Angew. Chem. Int. Ed. Engl. 36 (1998) 662; M.S. Stephan and J.G. de Vries, in: Chemical Industries 82, Catalysis of Organic Reactions, ed. M.E. Ford (Dekker, New York, 2000) pp. 379-390.

    Google Scholar 

  13. H.T. Clarke and E.J. Rahrs, Org. Synth. Coll., Vol. 1, p. 91.

  14. J.G. de Vries, Lecture at 12th ISHC, Stockholm, Sweden (2000); N.A. Dhas, H. Cohen and A. Gedanken, J. Phys. Chem. B 101 (1997) 6834; J.H. Ding and D.L. Gin, Chem. Mater. 12 (2000) 22; M.T. Reetz, R. Breinbauer and K. Wanninger, Tetrahedron Lett. 37 (1996) 4499; M.T. Reetz and E. Westermann, Angew. Chem. Int. Ed. Engl. 39 (2000) 165.

    Google Scholar 

  15. J.C. Wisse, A.L.B. Dijt, W.R.M. Martens, R.M. Eder and J.T. Tinge, European Patent EP 913 358 (1999) to DSM.

  16. A. van Rooy, E.N. Ory, P.C.J. Kamer, F. van den Aardweg and P.W.N.M. van Leeuwen, Chem. Commun. (1991) 1096.

  17. G.P.F. van Strijdonck, M.D.K. Boele, P.C.J. Kamer. J.G. de Vries and P.W.N.M. van Leeuwen, Eur. J. Inorg. Chem. (1999) 1073.

  18. F.J. Parlevliet, A.H.M. de Vries and J.G. de Vries, Dutch Patent Application 1015520 (2000), to DSM.

  19. E. Poetsch, Kontakte (Darmstadt) (1988) 15.

  20. M.J. Monteith, in: Proc. of the BACCS Conference at Chemical Specialties 98, Amsterdam (1998) p. 25; P.B.M.W.M. Timmermans, Hypertens. Res. 22 (1999) 147.

  21. S.P. Stanforth, Tetrahedron 54 (1998) 263.

    Google Scholar 

  22. K. Tamao, A. Minato, N. Miyake, T. Matsuda, Y. Kiso and M. Kumada, Chem. Lett. (1975) 133; M. Kumada, Pure Appl. Chem. 52 (1980) 669; E. Negishi, in: Metal-Catalyzed Cross-Coupling Reactions, eds. F. Diederich and P.J. Stang (Wiley-VCH, Weinheim, 1998) pp. 1-47.

  23. E. Shirakawa, K. Yamasaki and T. Hiyama, J. Chem. Soc. Perkin Trans. 1 (1997) 2449; V. Farina, Pure Appl. Chem. 68 (1996) 73.

    Google Scholar 

  24. E. Negishi, A.O. King and N. Okukado, J. Org. Chem. 42 (1977) 1821; E. Negishi, N. Okukado, A.O. King, D.E. Van Horn and B.I. Spiegel, J. Am. Chem. Soc. 100 (1978) 2254; E. Negishi and F. Liu in: Metal-Catalyzed Cross-Coupling Reactions, eds. F. Diederich and P.J. Stang (Wiley-VCH, Weinheim, 1998) p. 12.

    Google Scholar 

  25. A. Suzuki, in: Metal-Catalyzed Cross-Coupling Reactions, eds. F. Diederich and P.J. Stang (Wiley-VCH, Weinheim, 1998) p. 49; N. Miyaura and A. Suzuki, Chem. Rev. 95 (1995) 2457; M.B. Mitchell and P.J. Wallbank, Tetrahedron Lett. 32 (1991) 2273; N.M. Ali, A. McKillop, M.B. Mitchell, R.A. Rebelo and P.J. Wallbank, Tetrahedron 37 (1992) 8117; S. Saito, M. Sakai and N. Miyaura, Tetrahedron Lett. 37 (1996) 2993; M.T. Reetz, R. Breinbauer and K. Wanninger, Tetrahedron Lett. 37 (1996) 4499; A.F. Indolese, Tetrahedron Lett. 38 (1997) 3513; W. Shen, Tetrahedron Lett. 38 (1997) 5575; M. Saito, S. Oh-tani and N. Miyaura, J. Org. Chem. 62 (1997) 8024.

    Google Scholar 

  26. K. Sonogashira in: Metal-Catalyzed Cross-Coupling Reactions, eds. F. Diederich and P.J. Stang (Wiley-VCH, Weinheim, 1998) p. 203; S. Takahashi, Y. Koroyama, K. Sonogashira and N. Hagirara, Synthesis (1980) 627.

    Google Scholar 

  27. W.B. Austin, N. Bilow, W.J. Kelleghan and K.S.Y. Lau, J. Org. Chem. 46 (1981) 2280; A. Mori, J. Kawashima, T. Shimada, M. Suguro, K. Hirabayashi and Y. Nishihara, Org. Lett. 2 (2000) 2935.

    Google Scholar 

  28. D.L. Boger and J. Zhou, J. Org. Chem. 58 (1993) 3018; L.S. Bleicher, N.D.P. Cosford, A. Herbaut, J.S. McCallum and I.A. McDonald, J. Org. Chem. 63 (1998) 1109; S. Thorand and N. Krasue, J. Org. Chem. 63 (1998) 8551.

    Google Scholar 

  29. K. Yamakawa, JP Patent 10114691 (1998), to Fuji Photo Film Co. Ltd.; H. Kawamoto, K. Nakano and K. Kmamiya, JP Patent 20010213.

  30. W. Cabri and E. Oldani, US Patent 5 902 902 (1999), to Secipharma Spa.

  31. J.M. Gruber, US Patent 6 100 429 (2000), to Catalytica Pharmaceuticals; J.M. Gruber, US Patent 6 225 499 (2001), to Catalytica Pharmaceuticals.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, C.E., de Vries, J.G. Homogeneous Catalysis for the Production of Fine Chemicals. Palladium- and Nickel-Catalysed Aromatic Carbon–Carbon Bond Formation. Topics in Catalysis 19, 111–118 (2002). https://doi.org/10.1023/A:1013841518270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013841518270

Navigation