Skip to main content
Log in

Genetic diversity in melon (Cucumis melo L.): Anevaluation of African germplasm

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genetic diversity among 126 exotic (108) andreference array (RA) melon (Cucumismelo L.) accessions (18) was assessed byvariation at 49 random amplified polymorphic DNA marker bands(putative loci) using 29 10-mer primers. Africanaccessions of unknown melon market classes were compared to the RAaccessions from a broad range of C.melo subsp. melo groups(Cantalupensis, Conomon, Inodorus and Flexuosus). Althoughdifferences in groupings occurred after multidimensional scaling andcluster analysis, both analyses placed African accessions into twogroups, which were separate from RA groupings. One African group of33 accessions containing accessions from Zimbabwe (5),Zambia (24), Mali (1), one of two Senegalaccessions and two of three South African accessions examined. Thesecond group, which consisted of 67 accessions containing collectionsfrom Egypt (40), Tunisia (6), Libya(13), Morocco (1), Algeria (2),Ethiopia (1), Niger (1), Sierra Leone(1), S. Africa (1), Zambia (1) andZimbabwe (1). Depending on the multivariate analysistechnique employed, accessions from Kenya, Senegal and Ghana formedeither unique groupings or were grouped with accessions(Cantalupensis) from the RA. Both analyses indicate thatthe genetic differences inherent between the African gene pools isassociated with the geographic proximity of African countries(northern vs. central-southern Africa) in thegermplasm array examined. Moreover, these data indicate that thegenetic diversity of U.S. and European commercial RA germplasm(Cantalupensis and Inodorus) could be enhanced by theintroduction of genetic variation from African accessions, and thatit would be advantageous to acquire more accessions from thisgeographically and ecologically varied region to ensure the retentionof existing genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey L.H. and Bailey E.Z. 1976. Hortus Third. MacMillan Publishers, New York.

    Google Scholar 

  • Baudracco-Arnas S. and Pitrat M. 1996. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistdivisions ance and morphological markers. Theor. Appl. Genet. 93: 57–64.

    Google Scholar 

  • Bretting P.K. and Widrlechner M.P. 1995. Genetic markers and averplant genetic resource management. Plant Breeding Rev. 13: 11–86.

    Google Scholar 

  • Chester K.S. 1951. The origin, variation, immunity and breeding of cultivated plants: Selected writings of N.I.Vavilov. In: Verdoorin F (ed.), Chronica Botanica: An International Collection of Studies in the Method and History of Biology and Agriculture Vol. 13: 6.–366.

  • Chatfield C. and Colllins A.J. 1980. Introduction to Multivariate Analysis. Chapman and Hall, Ltd, London, 246 pp.

    Google Scholar 

  • Esquinas-Alcazar J.T. 1981. Allozyme variation and relationships among Spanish landraces of Cucumis melo L. Kulturpflanze 22: 337–352.

    Google Scholar 

  • Frankel O.H. 1977. Natural variation and its conservation. In: Muhammed A., Aksel R. and von Borstel R.C. (eds), Genetic Diversity in Plants. Plenum Press, New York, pp. 21–44.

    Google Scholar 

  • Gnanadesiken R. 1977. Methods for Statistical Data Analysis of Multivariate Observations. John Wiley and Sons, N.Y.

    Google Scholar 

  • Garcia E., Jamilena M., Alvarez J.I., Arnedo T., Oliver J.L. and Lozano R. 1998. Genetic relationships among melon breeding lines revealed by RAPD markers and agronomic traits. Theor. Appl. Genet. 96: 878–885.

    Google Scholar 

  • Greuter W., Barrie F.r., Burdet H.M., Chaloner W.G., Demoulin V., Hawksworth D.L. et al. 1994. International code of botanical nomenclature (Tokyo code). Regnum Veg. Koeltz Scientific Books, Koenigstein, Germany 131: 1–389.

    Google Scholar 

  • Horejsi T. and Staub J.E. 1999. Genetic variaiton in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Gen. Res. Crop Evol. 46: 337–350.

    Google Scholar 

  • Jeffrey C. 1980. A review of the Cucurbitaceae. Bot. J. Linnean Soc. 81: 233–247.

    Google Scholar 

  • Katzir N., Danin-Poleg Y., Tzuri G., Karchi Z., Lavi U. and Cregan P.B. 1996. Length polymorphism and homologies of microsatelerrors lites in several Cucurbitacea species. Theor. Appl. Genet. 93: 1282–1290.

    Google Scholar 

  • Kirkbride, Jr. J.H. 1993. Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae). Parkway Publishers, Boone, North Carolina.

    Google Scholar 

  • Lanaud C. and Lebot V. 1997. Molecular techniques for increased use of genetic resources. In: Ayad W.G., Hodgkin T., Jaradat A. and Rao V.R. (eds), Molecular Genetic Techniques for Plant Genetic Resources. International Plant Genetic Resources Institute, Rome, pp. 92–97.

    Google Scholar 

  • Lefebvre V. and Chevre A.M. 1995. Tools for making plant disease and pest resistance genes: A review. Agronomie 15: 3–19.

    Google Scholar 

  • Maniatis T., Fritsch E.F. and Sambrook J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Naudin C. 1859. Essais d'une monographie des especes et des variet es du genre Cucumis. Ann. Sci. Natl. ser. 4 Bot. 11: 5.

    Google Scholar 

  • McCreight J.D., Nerson H. and Grumet R. 1993. Melon Cucumis elo L.In: Kalloo G. and Bergh B.O. (eds), Genetic Improvement of Vegetable Crops. Pergamon Press, N.Y.

    Google Scholar 

  • Neuhausen S.L. 1992. Evaluation of restriction fragment length polymorphisms in Cucumis melo. Theor. Appl. Genet. 83: 379–384.

    Google Scholar 

  • Mo-Suk Y., Im-Sung H., Go-Gawn D., Ann-Chong M. and Kim-Doo H. 1999. RAPD analsysis of genetic diversity of melon species. Korean J. Hort. Sci. Tech. 16: 21–24.

    Google Scholar 

  • Pistorius R. 1997. Scientists, Plants and Politics: A History of the Plant Genetic Resources Movement. International Plant Genetic Resources Institute, Rome, pp. 134.

    Google Scholar 

  • Richard S.D. 1970. Gene pools in forestry. In: Frankel O.S. and Bennett E. (eds), Genetic Resources in Plants-Their Exploration and Conservation. Blackwell, Oxford, pp. 353–365.

    Google Scholar 

  • Robinson R.W. and Decker-Walters D.S. 1997. Cucurbits. pp. 226. SAS Institute 1992. SAS/STAT User'S Guide. SAS Inst., Cary, NC, Release 6.03 Edition.

    Google Scholar 

  • Shattuck-Eidens D.M., Bell R.N., Neuhausen S.L. and Hellentjaris T. 1990. DNA sequence variation within maize and melon: Observations from polymerase chain reaction amplification and direct sequencing. Genetics 126: 207–217.

    Google Scholar 

  • Silberstein L., Kovalski I., Huang R.G., Anagnostu K., Jahn M.M.K. and Perl Treves R. 1999. Molecular variation in melon (Cucumis melo L.) as revealed by RFLP and RAPD markers. Scientia Horticulturae 79: 101–111.

    Google Scholar 

  • Sokal R.R. and Rohlf F.J. 1981. Biometry. 2nd edn. Freeman, San Fransico, CA.

    Google Scholar 

  • Sokal R.R. and Sneath P.H. 1963. Principles of Numerical Taxonomy. Freeman, San Francisco, CA.

    Google Scholar 

  • Sorensen T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commons. Biologiske Skrifter 5: 1–34.

    Google Scholar 

  • Spooner D.M., Tivang J., Nienhuis J., Miller J.T., Douches D.S. and Contreras A. 1996. Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potato). Theor. Appl. Genet. 92: 532–540.

    Google Scholar 

  • Staub J.E., Serquen F. and Gupta M. 1996a. Genetic markers, map construction and their application in plant breeding. HortScience 31: 729–741.

    Google Scholar 

  • Staub J.E., Bacher J. and Poetter K. 1996b. Sources of potential errors in the application of random amplified polymorphic DNAs in cucumber. HortScience 31: 262–266.

    Google Scholar 

  • Staub J.E., Box J., Meglic V., Horejsi T.F. and McCreight J.D. 1997. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Gen. Res. Crop Evol. 44: 257–269.

    Google Scholar 

  • Staub J.E., Danin-Poleg Y., Fazio G., Horejsi T., Reis N. and Katzir N. 2000. Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA Instiand simple sequence repeat markers. Euphytica 115: 225–241.

    Google Scholar 

  • Staub J.E., Serquen F.C., Horejsi T. and Chen J.F. 1999. Genetic diversity in cucumber (Cucumis melo L.): IV. An evaluation Chinese germplasm. Gen. Res. Crop Evol. 46: 297–310.

    Google Scholar 

  • Stepansky A., Kovalski I., Perl-Treves R. and Naudin C.V. 1999. Intraspecific classisfication of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant. Syst. Evol. 217: 313–332.

    Google Scholar 

  • Torres-Ruiz R.A. and Hemleben V. 1991. Use of ribosomal DNA spacer probes to distinguish cultivars of Cucurbita pepo L. other Cucurbitaceae. Euphytica 5: 11–17.

    Google Scholar 

  • Waugh R. and Powell W. 1992. Using RAPD markers for crop improvement. Trends in Biotech. 10: 186–191.

    Google Scholar 

  • Whitaker T.W. and Davis G.N. 1962.Cucurbits: Botany, Cultivation and Utilization. Interscience Publishers, New York.

    Google Scholar 

  • Whitaker T.W. and Bemis W.P. 1976. Cucurbits, Cucumis, Citrullus, Cucurbita, Lagenaria (Cucurbitaceae). In: Simmonds N.W(ed.), Evolution of Crop Plants. Longrams, N.Y, pp. 64–69.

    Google Scholar 

  • Wilkinson L. 1989. SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, Illinois.

    Google Scholar 

  • Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A. Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 6531–6535.

  • Winter P. and Kahl G. 1995. Molecular marker technologies plant improvement. J. Microbio. Biotechn. 11: 438–448.

    Google Scholar 

  • Zentgraf U., King K. and Hemleben V. 1992. Repetitive sequences are valuable as molecular markers in studies of phylogenetic relationships within the genus Cucumis. Acta Botanica-Neerlandica 4: 397–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mliki, A., Staub, J.E., Zhangyong, S. et al. Genetic diversity in melon (Cucumis melo L.): Anevaluation of African germplasm. Genetic Resources and Crop Evolution 48, 587–597 (2001). https://doi.org/10.1023/A:1013840517032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013840517032

Navigation