Skip to main content
Log in

Π à la Node: Disordered d-Wave Superconductors in Two Dimensions for the Random Masses

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We review work on the problem of disorder in the 2D d-wave superconducting state, and show that the symmetries of the normal state and the disorder distribution are vital for understanding the low-energy behavior. Most previous theoretical results for the density of states (DOS) are reconciled by a combination of exact numerical solutions of the Bogoliubov–de Gennes equations and weak localization calculations, which suggest that a novel diffusive mode with momentum (π, π) is responsible for a divergence of the DOS in the globally particle-hole symmetric case. We note briefly that the simple problem of a disordered tight-binding band of normal electrons displays some similar effects, which have been overlooked in the literature. Finally, in the physically realistic case of binary alloy disorder, no particle-hole symmetry, and an order parameter which is supressed around each impurity site, a power law with nonuniversal exponent is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P.W. Anderson, Phys. Rev. Lett. 3, 328 (1959).

    Google Scholar 

  2. R. Balian and N. Werthamer, Phys. Rev. 131, 1553 (1963).

    Google Scholar 

  3. L.P. Gorkov and Kalugin, Pis'ma Zh. Eksp. Teor. Fiz. 41, 208 (1985) [JETP Letters 41, 253 (1985)].

    Google Scholar 

  4. K. Ueda and T.M. Rice Phys. Rev., Theory of Heavy Fermions and Valence Fluctuations, T. Kasuya and T. Saso, eds. (Springer, Berlin, 1985), p. 23.

    Google Scholar 

  5. A.A. Abrikosov and L.P. Gorkov, Zh. Eksp. Teor. Fiz. [Sov. Phys.-JETP 12, 1243 (1961)].

  6. C. Pethick and D. Pines, Phys. Rev. Lett. 57, 118 (1986).

    Google Scholar 

  7. P.J. Hirschfeld, D. Vollhardt and P. Wölfle, Sol. St. Comm. 59, 111 (1986).

    Google Scholar 

  8. S. Schmitt-Rink, K. Miyake, and C.M. Varma, Phys. Rev. Lett. 57, 2575 (1986).

    Google Scholar 

  9. P.C.E. Stamp, J. Magnetism and Magnetic Materials 63–64, 429 (1987).

    Google Scholar 

  10. See, e.g., D.J. Scalapino, Phys. Rep 250, 329 (1995).

    Google Scholar 

  11. P.J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219(1993).

    Google Scholar 

  12. L.S. Borkowski and P.J. Hirschfeld, Phys. Rev. B 49, 15404 (1994).

    Google Scholar 

  13. A.A. Nersesyan, A.M. Tsvelik, and F. Wenger, Phys. Rev. Lett. 72, 2628 (1994).

    Google Scholar 

  14. K. Ziegler, M.H. Hettler, and P.J. Hirschfeld, Phys. Rev. Lett. 77, 3013 (1996).

    Google Scholar 

  15. T. Senthil and M.P.A. Fisher, Phys. Rev. B 60, 6893 (1999).

    Google Scholar 

  16. M. Bocquet, D. Serban, M.R. Zirnbauer, Nucl. Phys. B 578, 628 (2000).

    Google Scholar 

  17. C. Pépin and P.A. Lee, Phys. Rev. Lett. 81, 2779 (1998); Phys. Rev. B 63, 054502 (2001).

    Google Scholar 

  18. W.A. Atkinson, P.J. Hirschfeld, and A.H. MacDonald, Phys. Rev. Lett. 85, 3922 (2000).

    Google Scholar 

  19. W.A. Atkinson, P.J. Hirschfeld, A.H. MacDonald, and K. Ziegler, Phys. Rev. Lett. 85, 3926 (2000).

    Google Scholar 

  20. A.G. Yashenkin, W.A. Atkinson, I.V. Gornyi, P.J. Hirschfeld, and D.V. Khveshchenko, Phys. Rev. Lett. 86, 5982 (2001).

    Google Scholar 

  21. C. Chamon and C. Mudry, Phys. Rev. B 63, 100503 (2001).

    Google Scholar 

  22. M. Fabrizio, L. Dell'Anna, and C. Castellani, cond-mat/0108035; A. Altland, cond-mat/0108079.

  23. W.A. Atkinson and P.J. Hirschfeld, unpublished

  24. A.A. Nersesyan and A.M. Tsvelik, Phys. Rev. Lett. 78, 3981 (1997).

    Google Scholar 

  25. K. Ziegler, M.H. Hettler and P.J. Hirschfeld, Phys. Rev. B 57, 10825 (1998).

    Google Scholar 

  26. A. Altland and M. Zirnbauer, Phys. Rev. B 55, 1142 (1997).

    Google Scholar 

  27. For a listing of the 10 Cartan classes, see for example M. Titov, P.W. Brouwer, A. Furusaki, and C. Mudry, Phys. Rev. B 53, 235318 (2001).

    Google Scholar 

  28. P.A. Lee, Phys. Rev. Lett. 71, 1887 (1993).

    Google Scholar 

  29. J.-X. Zhu, D.N. Sheng, and C.S. Ting, Phys. Rev. Lett. 85, 4944 (2000).

    Google Scholar 

  30. A. Altland, B.D. Simons, and M.R. Zirnbauer, cond-mat/0006362.

  31. V. Gurarie, cond-mat/9907502; B. Huckestein and A. Altland, cond-mat/0007413; B. Horowitz and P. LeDoussal, cond-mat/0108143.

  32. S. Cho and M.P.A. Fisher, Phys. Rev. B 55, 1025 (1997); N. Read and D. Green, Phys. Rev. B 61, 10267 (2000); I.A. Gruzberg, N. Read, and A.W.W. Ludwig, Phys. Rev. B 63, 104422 (2001); N. Read and A.W.W. Ludwig, Phys. Rev. B 63, 024404 (2001); O. Motrunich, K. Damle, and D.A. Huse, cond-mat/0011200, cond-mat/0107582.

    Google Scholar 

  33. W.A. Atkinson and P.J. Hirschfeld, Physica C 341–348, 1687 (2000).

    Google Scholar 

  34. B.L. Altshuler and A.G. Aronov, Modern Problems in Condensed Matter Sciences. v. 10, (Elsevier, Amsterdam 1985), p. 1.

    Google Scholar 

  35. A.L. Efros and B.I. Shklovskii, J. Phys. C 8, L49 (1975).

    Google Scholar 

  36. S.-R. E. Yang and A.H. MacDonald, Phys. Rev. Lett. 70, 4110 (1993).

    Google Scholar 

  37. E.P. Nakhmedov, M. Kumru, R. Oppermann, Phys. Rev. Lett. 84, 3930 (2000); E.P. Nakhmedov, H. Feldmann, R. Oppermann, and M. Kumru, Phys. Rev. B 62, 13490 (2000).

    Google Scholar 

  38. F.J. Dyson, Phys. Rev. 92, 1331 (1953).

    Google Scholar 

  39. R. Gade and F. Wegner, Nucl. Phys. B 360, 213 (1991).

    Google Scholar 

  40. I. Gruzberg, A. Shytov and P.J. Hirschfeld, cond-mat/0102197.

  41. See e.g., P.W. Brouwer, C. Mudry, and A. Furusaki, Phys. Rev. Lett. 84, 2913 (2000).

    Google Scholar 

  42. This divergence was predicted by C. Mudry, private communication.

  43. A. Eilmes, R.A. Roemer, and M. Schreiber, Eur. Phys. J. B 1, 29 (1998).

    Google Scholar 

  44. C.F. Chang, J.-Y. Lin, and H.D. Yang, Phys. Rev. Lett. 84, 5612 (2000).

    Google Scholar 

  45. For an attempt in this direction, see M.H. Hettler and P.J. Hirschfeld, Phys. Rev. B 59, 9606 (1999); Phys. Rev. B 61, 11313 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschfeld, P.J., Atkinson, W.A. Π à la Node: Disordered d-Wave Superconductors in Two Dimensions for the Random Masses. Journal of Low Temperature Physics 126, 881–900 (2002). https://doi.org/10.1023/A:1013838523587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013838523587

Keywords

Navigation