Skip to main content
Log in

Thermalization of Displacement Cascades in Solids and the Thermal Spike Model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the thermalization of low-energy cascades of displacements in solids using methods of nonequilibrium statistical thermodynamics. We investigate the time evolution of the quasi temperature of cascade particles taking the phonon scattering on dislodged atoms and the thermal recombination of defects into account. We use the obtained quasi-temperature time dependence to study the activated process—sputtering in the thermal spike region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Kashlev, Theor. Math. Phys., 123, 821 (2000).

    Google Scholar 

  2. Yu. A. Kashlev, Theor. Math. Phys., 126, 258 (2001).

    Google Scholar 

  3. W. Brandt, Appl. Phys., 5, 1 (1974).

    Google Scholar 

  4. Y. Jkari, J. Phys. Soc. Japan, 46, 97 (1979).

    Google Scholar 

  5. T. McMullen, J. Phys., 7, 2041 (1977).

    Google Scholar 

  6. A. P. Mills Jr.and L. Pfeiffer, Phys. Rev. Lett., 43, 1961 (1979).

    Google Scholar 

  7. W. Prandt and R. Paulin, Phys. Rev. B,5, 2430 (1972).

    Google Scholar 

  8. M. W. Thompson and R.S. Nelson, Philos. Mag., 7, No. 84, 2015 (1962).

    Google Scholar 

  9. D. N. Zubarev, Nonequilibruim Statistical Thermodynamics [in Russian ], Nauka, Moscow (1971); English transl., Plenum, New York (1974).

    Google Scholar 

  10. M. Lagos, Solid State Commun., 50, 777 (1984); 69, 11 (1989).

    Google Scholar 

  11. Yu. A. Kashlev, Theor. Math. Phys., 24, 820 (1975).

    Google Scholar 

  12. R. Kubo, Phys.Rev., 86, 929 (1952).

    Google Scholar 

  13. G. H. Kinchin and R. S. Pease, Usp. Fiz. Nauk, 60, 582 (1956).

    Google Scholar 

  14. D. K. Brice and B. L. Doyle, J.Nucl.Mater., 120, No. 2, 230 (1984).

    Google Scholar 

  15. Yu. A. Kashlev, Theor. Math. Phys., 116, 1083 (1998).

    Google Scholar 

  16. Yu. A. Kashlev and N. M Sadykov, Theor. Math. Phys., 111, 779 (1997).

    Google Scholar 

  17. J. Lindhard, Mat.-Fys. Medd. Dan. Vid. Selsk., 34, No.14, 1 (1965).

    Google Scholar 

  18. G. J. Dienes and G.H. Vineyard, Radiation Effects in Solids, Interscience, New York (1957).

    Google Scholar 

  19. F. Seits and J.S. Kochler, Solid State Phys., 2, 305 (1956).

    Google Scholar 

  20. H. Blank, Phys. Stat. Sol., 10(a), 465 (1972).

    Google Scholar 

  21. R. Chang, Acta Metal., 5, 257 (1957).

    Google Scholar 

  22. C. A. Andersen and J. R. Hinthorne, Ann. Chem., 45, 1421 (1973).

    Google Scholar 

  23. G.H. Vineyard, Rad. Eff., 29, 245 (1976).

    Google Scholar 

  24. R. Kelly, Rad. Eff., 32, 91 (1977).

    Google Scholar 

  25. G. M. Pound, J.Phys. Chem. Ref. Data, 1, 135 (1972).

    Google Scholar 

  26. R. S. Nelson, Philos. Mag., 11, No.110, 291 (1965).

    Google Scholar 

  27. W. Schtiller, Arrhenuis Equation and Nonequilibrium Kinetics, Mir, Moscow (2000).

    Google Scholar 

  28. L. P. Kadanoffand J. Swift, Phys. Rev., 168, 310 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashlev, Y.A. Thermalization of Displacement Cascades in Solids and the Thermal Spike Model. Theoretical and Mathematical Physics 130, 111–122 (2001). https://doi.org/10.1023/A:1013836700391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013836700391

Keywords

Navigation