Topics in Catalysis

, Volume 18, Issue 1–2, pp 67–72 | Cite as

In situ XAFS Characterization of Supported Homogeneous Catalysts

  • Jae Sung Lee
  • Eun Duck Park
Article

Abstract

Heterogenization of homogeneous catalysts explores the cross-fertilization of homogeneous and heterogeneous catalysts to combine most of their advantages. The molecular dispersion of active sites in these materials limits the application of conventional spectroscopic techniques utilized for the characterization of heterogeneous catalysts. The X-ray absorption spectroscopy is the most suitable tool to characterize the molecular species present in these catalysts because this technique is sensitive to short-range structural orders, element-specific and amenable to in situ studies. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies for selective examples of supported homogeneous catalysts are reviewed. Supported liquid phase catalysts (supported Wacker-type catalysts for CO oxidation), intercalated homogeneous catalysts, supported metal complexes for the olefin polymerization and tethered homogeneous catalysts are included.

EXAFS XANES supported homogeneous catalysts heterogenised immobilized intercalated tethered supported liquid phase catalysis (SLPC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Choplin and F. Quignard, Coord. Chem. Rev. 178–180 (1998) 1679.Google Scholar
  2. [2]
    E.D. Park, J.S. Lee and K.H. Lee, Catal. Today 63 (2000) 147.Google Scholar
  3. [3]
    D.C. Koningsberger, B.L. Mojet, G.E. van Dorssen and D.E. Ramaker, Topics Catal. 10 (2000) 143.Google Scholar
  4. [4]
    O. Alexeev and B.C. Gates, Topics Catal. 10 (2000) 273.Google Scholar
  5. [5]
    J.S. Lee, S.H. Choi, K.D. Kim and M. Nomura, Appl. Catal. B 7 (1996) 199.Google Scholar
  6. [6]
    S.H. Choi and J.S. Lee, React. Kinet. Catal. Lett. 57 (1996) 227.Google Scholar
  7. [7]
    Y. Yamamoto, T. Matsuzaki, K. Ohdan and Y. Okamoto, J. Catal. 161 (1996) 577.Google Scholar
  8. [8]
    E.D. Park, S.H. Choi and J.S. Lee, J. Phys. Chem. B 104 (2000) 5586.Google Scholar
  9. [9]
    K.D. Kim, I.-S. Nam, J.S. Chung, J.S. Lee, S.G. Ryu and Y.S. Yang, Appl. Catal. B 5 (1994) 103.Google Scholar
  10. [10]
    D.J. Koh, J.H. Song, S.-W. Ham, I.-S. Nam, R.-W. Chang, E.D. Park, J.S. Lee and Y.G. Kim, Korean J. Chem. Eng. 14 (1997) 486.Google Scholar
  11. [11]
    E.D. Park and J.S. Lee, J. Catal. 180 (1998) 123.Google Scholar
  12. [12]
    E.D. Park and J.S. Lee, J. Catal. 193 (2000) 5.Google Scholar
  13. [13]
    K.A. Carrado and S.R. Wasserman, Chem. Mater. 8 (1996) 219.Google Scholar
  14. [14]
    J.H. Choy, D.K. Kim, J.C. Park, S.N. Choi and Y.J. Kim, Inorg. Chem. 36 (1997) 189.Google Scholar
  15. [15]
    P.J. Alonso, J.M. Fraile, J. Garcia, J.I. Garcia, J.I. Martinez, J.A. Mayoral and M.C. Sanchez, Langmuir 16 (2000) 5607.Google Scholar
  16. [16]
    P.J.V. Jones and R.J. Oldman, in: Transition Metals and Organometallics as Catalysts for Olefin Polymerization,eds.W. Kaminsky and H. Sinn (Springer, Berlin, 1988) p. 223.Google Scholar
  17. [17]
    L. Aleandri, V. Fraaije, G. Fink, D. Jones and J. Roziere, Macromol. Rapid Commun. 15 (1994) 453.Google Scholar
  18. [18]
    A.G. Potapov, V.V. Kriventsov, D.I. Kochubey, G.D. Bukatov and V.A. Zakharov, Macromol. Chem. Phys. 198 (1997) 3477.Google Scholar
  19. [19]
    P.J. Ellis, R.W. Joyner, T. Maschmeyer, A.F. Masters, D.A. Niles and A.K. Smith, J. Mol. Catal. A 111 (1996) 297.Google Scholar
  20. [20]
    S. O'Brien, J. Tudor, T. Maschmeyer and D. Ohare, J. Chem. Soc. Chem. Commun. 19 (1997) 1905.Google Scholar
  21. [21]
    J.H. Lunsford and S. Fu, Langmuir 6 (1990) 1784.Google Scholar
  22. [22]
    S.H. Lau, V. Caps, K.W. Yeung, K.Y. Wong and S.C. Tsang, Micropor. Mesopor. Mater. 32 (1999) 279.Google Scholar
  23. [23]
    C. Bianchini, D.G. Burnaby, J. Evans, P. Frediani, A. Meli, W. Oberhauser, R. Psaro, L. Sordelli and F. Vizza, J. Am. Chem. Soc. 121 (1999) 5961.Google Scholar
  24. [24]
    S. O'Brien, J. Tudor, S. Barlow, M.J. Drewitt, S.J. Heyes and D. Ohare, J. Chem. Soc. Chem. Commun. 6 (1997) 641.Google Scholar
  25. [25]
    E. Lindner, T. Schneller, F. Auer and H.A. Mayer, Angew. Chem. Int. Ed. 38 (1999) 2154.Google Scholar
  26. [26]
    E. Lindner, T. Schneller, H.A. Mayer, H. Bertagnolli, T.S. Ertel and W. Horner, Chem. Mater. 9 (1997) 1524.Google Scholar
  27. [27]
    O. Krocher, R.A. Koppel, M. Froba and A. Baiker, J. Catal. 178 (1998) 284.Google Scholar
  28. [28]
    E. Lindner, W. Wielandt, A. Baumann, H.A. Mayer, U. Reinohl, A. Weber, T.S. Ertel and H. Bertagnolli, Chem. Mater. 11 (1999) 1833.Google Scholar
  29. [29]
    E. Lindner, F. Auer, A. Baumann, P. Wegner, H.A. Mayer, H. Bertagnolli, U. Reinohl, T.S. Ertel and A. Weber, J. Mol. Catal. A 157 (2000) 97.Google Scholar
  30. [30]
    E. Lindner, A. Baumann, P. Wegner, H.A. Mayer, U. Reinohl, A. Weber, T.S. Ertel and H. Bertagnolli, J. Mater. Chem. 10 (2000) 1655.Google Scholar
  31. [31]
    A.P. Markusse, B.F.M. Kuster, D.C. Koningsberger and G.B. Marin, Catal. Lett. 55 (1998) 141.Google Scholar
  32. [32]
    H.H.C.M. Pinxt, B.F.M. Kuster, D.C. Koningsberger and G.B. Marin, Catal. Today 39 (1998) 351.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Jae Sung Lee
    • 1
  • Eun Duck Park
    • 1
  1. 1.Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations