Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions

Abstract

Antioxidant vitamins and enzymes such as superoxide dismutase, catalase and glutathione peroxidase are considered to function as scavengers against reactive oxygen species and to provide protection against reactive oxygen species, including free radicals. Although antioxidants such as L-ascorbic acid, d-catechin and quercetin dehydrate show superoxide dismutation activity, using reduced water produced in the cathode side by electrolysis as a solvent instead of 2 mM NaC1 solution of the same pH level as the reduced water increased the superoxide dismutation activity of these antioxidants. Moreover, neither the reduced water nor its electrolyte solution showed any superoxide dismutation activity by itself. On the other hand, the reduced water was able to decrease hydrogen peroxide levels. It has been found that the behaviour of H2 in reduced water, which was activated by a platinum electrode, differed from that of H2 introduced by bubbling of hydrogen gas. The former decreased H2O2, whereas the latter did not. These results suggest strongly that the increase in superoxide dismutation activity, with a proton donor such as L-ascorbic acid, is due to an increase in the dissociation activity of water while the scavenging activity for H2O2 is due to activated dissolved H2 in the reduced water.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Yamamoto, E. Niki, J. Eguchi, Y. Kamiya and H. Shimazaki, Biochemica et Biophysica Acta 819 (1985) 29.

    Google Scholar 

  2. 2.

    S.V. Jovanovic and M.G. Simic, J. Am. Chem. Soc. 108 (1986) 5968.

    Google Scholar 

  3. 3.

    K. Sato, E. Niki and H. Shimazaki, Biochem. Biophys. 279 (1990) 402.

    Google Scholar 

  4. 4.

    E.R Stadtman, Science 257 (1992) 1220.

    Google Scholar 

  5. 5.

    L. Packer and J.J. Fuchs, 'Vitamin C in Health and Disease' (Marcel Dekker, New York, 1997).

    Google Scholar 

  6. 6.

    R.S. Sohal and R. Weindurch, Science 273 (1996) 59.

    Google Scholar 

  7. 7.

    J.M. McCord and I. Friedovich, J. Biol. Chem. 244 (1969) 6049.

    Google Scholar 

  8. 8.

    R. Nicholls and G.P. Schonbaum, 'The Enzyme' (Academic Press, New York, 1963).

    Google Scholar 

  9. 9.

    P. Amstad, R. Monet and P. Cerutti, J. Biol. Chem. 269 (1994) 1606.

    Google Scholar 

  10. 10.

    M. Takahashi, J. Tsuchiya, E. Niki and S. Urano, J. Nutr. Sci. Vitaminol. 34 (1988) 25.

    Google Scholar 

  11. 11.

    P. Palozza and N.I. Krinsky, Biochem. Biophys. 297 (1992) 184.

    Google Scholar 

  12. 12.

    B. Frei, L. England and B.N. Ames, Proc. Natl. Acad Sci. USA 86 (1989) 6377.

    Google Scholar 

  13. 13.

    E.J. Nanni, Jr, M.D. Stallings and D.T. Sawyer, J. Am. Chem. Soc. 102 (1980) 4481.

    Google Scholar 

  14. 14.

    G.S. Omenn, G.E. Goodman and M.D. Thornquist, N. Engl. J. Med. 334 (1996) 1150.

    Google Scholar 

  15. 15.

    S. Shirahata, S. Kabayama, M. Nakano, T. Miura, K. Kusumoto, M. Gotoh, H. Hayashi, K. Otsubo, S. Morisawa and Y. Katakura, Biochem. Biophys. Res. Commun. 234 (1997) 269.

    Google Scholar 

  16. 16.

    T. Yoshida, K. Mori, T. Hatano, T. Hatano, T. Okumura, I. Uehara, K. Komagoe, Y. Fujita and T. Okuda, Chem. Pharm. Bull. 37(7) (1989) 1919.

    Google Scholar 

  17. 17.

    S.V. Jovanović, S. Steenken, M. Tosci, M. Tosic, B. Marjanovic and M.G. Simic, J. Am. Chem. Soc. 116 (1994) 4846.

    Google Scholar 

  18. 18.

    B.R. Breslau and I.F. Miller, Ind. Eng. Chem. Fundam. 10 (1971) 554.

    Google Scholar 

  19. 19.

    K. Hanaoka, R. Kiyono and M. Tasaka, J. Membrane Sci. 82 (1993) 255.

    Google Scholar 

  20. 20.

    R.L. leRoy, J. Electrochem. Soc. 130 (1983) 2158.

    Google Scholar 

  21. 21.

    Z. Takehara, Electrochim. Acta 15 (1970) 999.

    Google Scholar 

  22. 22.

    K. Fujikawa, A. Katayama and H. Kita, J. Chem. Soc. Faraday Trans. 175 (1973) 1.

    Google Scholar 

  23. 23.

    K. Fujikawa and H. Kita, J. Chem. Soc. Faraday Trans. 175 (1979) 2638.

    Google Scholar 

  24. 24.

    K. Fujikawa, H. Kita and S. Sato, J. Chem. Soc. Faraday Trans. 177 (1981) 3055.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanaoka, K. Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. Journal of Applied Electrochemistry 31, 1307–1313 (2001). https://doi.org/10.1023/A:1013825009701

Download citation

  • antioxidant
  • dismutation activity
  • electrolysis
  • hydrogen peroxide
  • reduced water
  • superoxide radicals