Hydrogen concentration in water from an Alkali–Ion–Water electrolyzer having a platinum-electroplated titanium electrode

Abstract

The supersaturated concentration of hydrogen in electrolyzed water obtained from a flow-type electrolytic cell was studied under various electrolysis conditions. The degree of supersaturation was found to decrease as the solution supply rate to the cell increased. The ratio of observed hydrogen concentration to the theoretical hydrogen concentration obtained from the electrochemical equivalent, as calculated from the transfer of charge in the cell, was found to increase with the solution supply rate. The concentration of hydrogen in solution has a maximum at a current density of approximately 0.3 A dm−2. This maximum was found to be independent of the flow rate, indicating that the hydrogen concentration is related to both the diffusion of dissolved hydrogen from the electrode surface to the bulk solution and hydrogen bubble growth.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C.W.M.P. Sillen, E. Barendrecht, L.J.J. Janssen and S.J.D. van Strahlen, Int. J. Hydrogen Energy 7 (1982) 577.

    Google Scholar 

  2. 2.

    V.G. Nefedov, Russ. J. Electrochem. 30 (1994) 1261.

    Google Scholar 

  3. 3.

    V.G. Nefedov and V.M. Matveev, Russ. J. Electrochem. 30 (1994) 1264.

    Google Scholar 

  4. 4.

    Y. Chogutte, H. Menard and L. Brossard, Int. J. Hydrogen Energy 15 (1990) 21.

    Google Scholar 

  5. 5.

    G. Krenpa, B. Hakansson and P. Ekudunce, Electrochim. Acta 33 (1988) 1351.

    Google Scholar 

  6. 6.

    A. Iwasaki, H. Kaneko, Y. Abe and M. Kamimoto, Electrochim. Acta 43 (1988) 509.

    Google Scholar 

  7. 7.

    B.E. El-Anadouli, M.M. Khader, M.M. Saleh and B.G. Ateya, J. Applied Electrochem. 21 (1991) 166.

    Google Scholar 

  8. 8.

    J.Y. Huot, M.L. Trudeau and R. Schulz, J. Electrochem. Soc. 138 (1991) 1316.

    Google Scholar 

  9. 9.

    P. Ekdunge, K. Juttner, G. Kreysa, T. Kessler, M. Ebert and W.J. Lorenz, J. Electrochem. Soc. 138 (1991) 2260.

    Google Scholar 

  10. 10.

    H. Wendt, H. Hofmann and V. Plzak, Mat. Chem. Phys. 22 (1989) 29.

    Google Scholar 

  11. 11.

    H. Wendt and H. Hofmann, J. Appl. Chem. 19 (1989) 605.

    Google Scholar 

  12. 12.

    G. Bendrich, W. Seiler and H. Vogt, Int. J. Heat Mass Transfer 29 (1986) 1741.

    Google Scholar 

  13. 13.

    S. Shibata, Bull. Chem. Soc. Japan 36 (1963) 53.

    Google Scholar 

  14. 14.

    S. Shibata, Electrochim. Acta 23 (1978) 619.

    Google Scholar 

  15. 15.

    K. Miyashita, M. Yasuda, T. Ota and T. Suzuki, Biosci. Biotechnol. Biochem. 63 (1999) 421.

    Google Scholar 

  16. 16.

    S. Shirahata, S. Kabayama, M. Miura, K. Kusumoto and Y. Katakura, Biochem. Biophys. Res. Commu. 234 (1997) 269.

    Google Scholar 

  17. 17.

    S. Suzuki, M. Nishina, T. Kuramochi, Y. Yamakawa, K. Yabe and M. Suzuki, Med. Biol. 131 (1995) 281.

    Google Scholar 

  18. 18.

    C.L. Young, Ed., IUPAC Solubility Data Series, Vol. 5/6, Hydrogen and Deuterium, (Pergamon Press, Oxford, England, 1981).

    Google Scholar 

  19. 19.

    R. Wood, In A.J. Bard (ed.), Electroanalytical Chemistry, Vol. 9, (Marcel Dekker, New York, 1976).

    Google Scholar 

  20. 20.

    H. Vogt, Electrochim. Acta 32 (1987) 633.

    Google Scholar 

  21. 21.

    L.J.J. Janssen, J. Appl. Electrochem. 17 (1987) 1177.

    Google Scholar 

  22. 22.

    H. Vogt, Electrochim. Acta 34 (1989) 1429.

    Google Scholar 

  23. 23.

    L.J.J. Janssen and E. Barendrecht, Electrochim. Acta 29 (1984) 1207.

    Google Scholar 

  24. 24.

    J.P. Glas and J.W. Westwater, Int. J. Heat Mass Transfer 7 (1964) 1427.

    Google Scholar 

  25. 25.

    P. Boissonneau and P. Byrne, J. Appl. Electrochem. 30 (2000) 767.

    Google Scholar 

  26. 26.

    E.L. Cussler, Diffuusion Mass Transfer in Fluid Systems (Cambridge University Press, England, 1997).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kikuchi, K., Takeda, H., Rabolt, B. et al. Hydrogen concentration in water from an Alkali–Ion–Water electrolyzer having a platinum-electroplated titanium electrode. Journal of Applied Electrochemistry 31, 1301–1306 (2001). https://doi.org/10.1023/A:1013824220007

Download citation

  • current density
  • hydrogen concentration
  • supersaturation
  • water electrolysis