Journal of Applied Electrochemistry

, Volume 31, Issue 12, pp 1301–1306 | Cite as

Hydrogen concentration in water from an Alkali–Ion–Water electrolyzer having a platinum-electroplated titanium electrode

  • Kenji Kikuchi
  • Hiroko Takeda
  • Beatrice Rabolt
  • Takuji Okaya
  • Zempachi Ogumi
  • Yasuhiro Saihara
  • Hiroyuki Noguchi
Article

Abstract

The supersaturated concentration of hydrogen in electrolyzed water obtained from a flow-type electrolytic cell was studied under various electrolysis conditions. The degree of supersaturation was found to decrease as the solution supply rate to the cell increased. The ratio of observed hydrogen concentration to the theoretical hydrogen concentration obtained from the electrochemical equivalent, as calculated from the transfer of charge in the cell, was found to increase with the solution supply rate. The concentration of hydrogen in solution has a maximum at a current density of approximately 0.3 A dm−2. This maximum was found to be independent of the flow rate, indicating that the hydrogen concentration is related to both the diffusion of dissolved hydrogen from the electrode surface to the bulk solution and hydrogen bubble growth.

current density hydrogen concentration supersaturation water electrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.W.M.P. Sillen, E. Barendrecht, L.J.J. Janssen and S.J.D. van Strahlen, Int. J. Hydrogen Energy 7 (1982) 577.Google Scholar
  2. 2.
    V.G. Nefedov, Russ. J. Electrochem. 30 (1994) 1261.Google Scholar
  3. 3.
    V.G. Nefedov and V.M. Matveev, Russ. J. Electrochem. 30 (1994) 1264.Google Scholar
  4. 4.
    Y. Chogutte, H. Menard and L. Brossard, Int. J. Hydrogen Energy 15 (1990) 21.Google Scholar
  5. 5.
    G. Krenpa, B. Hakansson and P. Ekudunce, Electrochim. Acta 33 (1988) 1351.Google Scholar
  6. 6.
    A. Iwasaki, H. Kaneko, Y. Abe and M. Kamimoto, Electrochim. Acta 43 (1988) 509.Google Scholar
  7. 7.
    B.E. El-Anadouli, M.M. Khader, M.M. Saleh and B.G. Ateya, J. Applied Electrochem. 21 (1991) 166.Google Scholar
  8. 8.
    J.Y. Huot, M.L. Trudeau and R. Schulz, J. Electrochem. Soc. 138 (1991) 1316.Google Scholar
  9. 9.
    P. Ekdunge, K. Juttner, G. Kreysa, T. Kessler, M. Ebert and W.J. Lorenz, J. Electrochem. Soc. 138 (1991) 2260.Google Scholar
  10. 10.
    H. Wendt, H. Hofmann and V. Plzak, Mat. Chem. Phys. 22 (1989) 29.Google Scholar
  11. 11.
    H. Wendt and H. Hofmann, J. Appl. Chem. 19 (1989) 605.Google Scholar
  12. 12.
    G. Bendrich, W. Seiler and H. Vogt, Int. J. Heat Mass Transfer 29 (1986) 1741.Google Scholar
  13. 13.
    S. Shibata, Bull. Chem. Soc. Japan 36 (1963) 53.Google Scholar
  14. 14.
    S. Shibata, Electrochim. Acta 23 (1978) 619.Google Scholar
  15. 15.
    K. Miyashita, M. Yasuda, T. Ota and T. Suzuki, Biosci. Biotechnol. Biochem. 63 (1999) 421.Google Scholar
  16. 16.
    S. Shirahata, S. Kabayama, M. Miura, K. Kusumoto and Y. Katakura, Biochem. Biophys. Res. Commu. 234 (1997) 269.Google Scholar
  17. 17.
    S. Suzuki, M. Nishina, T. Kuramochi, Y. Yamakawa, K. Yabe and M. Suzuki, Med. Biol. 131 (1995) 281.Google Scholar
  18. 18.
    C.L. Young, Ed., IUPAC Solubility Data Series, Vol. 5/6, Hydrogen and Deuterium, (Pergamon Press, Oxford, England, 1981).Google Scholar
  19. 19.
    R. Wood, In A.J. Bard (ed.), Electroanalytical Chemistry, Vol. 9, (Marcel Dekker, New York, 1976).Google Scholar
  20. 20.
    H. Vogt, Electrochim. Acta 32 (1987) 633.Google Scholar
  21. 21.
    L.J.J. Janssen, J. Appl. Electrochem. 17 (1987) 1177.Google Scholar
  22. 22.
    H. Vogt, Electrochim. Acta 34 (1989) 1429.Google Scholar
  23. 23.
    L.J.J. Janssen and E. Barendrecht, Electrochim. Acta 29 (1984) 1207.Google Scholar
  24. 24.
    J.P. Glas and J.W. Westwater, Int. J. Heat Mass Transfer 7 (1964) 1427.Google Scholar
  25. 25.
    P. Boissonneau and P. Byrne, J. Appl. Electrochem. 30 (2000) 767.Google Scholar
  26. 26.
    E.L. Cussler, Diffuusion Mass Transfer in Fluid Systems (Cambridge University Press, England, 1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kenji Kikuchi
    • 1
  • Hiroko Takeda
    • 1
  • Beatrice Rabolt
    • 1
  • Takuji Okaya
    • 1
  • Zempachi Ogumi
    • 2
  • Yasuhiro Saihara
    • 3
  • Hiroyuki Noguchi
    • 3
  1. 1.Department of Materials ScienceUniversity of Shiga PrefectureHikone, ShigaJapan
  2. 2.Graduate School of EngineeringKyoto UniversityKyotoJapan
  3. 3.Research & Development Center, Home Appliances Co. KadomaMatsushita Electric Works, Ltd.Kadoma, OsakaJapan

Personalised recommendations