Skip to main content
Log in

Kinetics of molecular oxygen electroreduction on platinum modified by tin underpotential deposition

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of molecular oxygen electroreduction were studied on platinum surfaces modified by tin underpotential deposition. The surface process was analysed by cyclic voltammetry in aqueous 10−4 M tin(II)/1 M sulfuric acid in the 0.05 to 0.70 V vs RHE range. Platinum sites involving (1 1 0) planes are mainly related to tin underpotential deposition as observed in the hydrogen sorption region. Kinetic runs for oxygen reduction were performed with the rotating ring-disc electrode technique on tin-modified platinum surfaces. It was concluded that molecular oxygen reduction on tin-modified platinum takes place through bulk hydrogen peroxide and water formation. This interpretation was confirmed by calculating the reaction order with respect to oxygen. Electrochemical rate constants for oxygen reduction pathways were calculated as a function of deposition potential based on Damjanović's reaction scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yeager, Electrochim. Acta 29 (1984) 1527.

    Google Scholar 

  2. K.L. Hsueh, E.R. González and S. Srinivasan, Electrochim. Acta 28 (1983) 691.

    Google Scholar 

  3. A.J. Appleby and S. Baker, J. Electrochem. Soc. 125 (1978) 404.

    Google Scholar 

  4. P.N. Ross and P.C. Andriacos, J. Electroanal. Chem. 154 (1983) 205.

    Google Scholar 

  5. R.R. Adzic, in R.E. White, J.O'M. Bockris and B.E. Conway (Eds), ‘Modern Aspects of Electrochemistry’, Vol. 21 (Plenum Press, New York, 1990), chap. 5 pp. 163-235.

    Google Scholar 

  6. D.M. Kolb, in H. Gerisher and C.W. Tobias (Eds), ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 11 (Interscience, New York, 1978) p. 125.

    Google Scholar 

  7. M.W. Breiter, J. Electrochem. Soc. 114 (1967) 1125.

    Google Scholar 

  8. D. Margheritis, R.C. Salvarezza, M.C. Giordano and A.J. Arvia, J. Electroanal. Chem. 229 (1987) 327.

    Google Scholar 

  9. S.A.S. Machado, A.A. Tanaka and E.R. González, Electrochim. Acta 36 (1991) 1325.

    Google Scholar 

  10. C.F. Zinola, A.M. Castro Luna, W.E. Triaca and A.J. Arvia, Electrochim. Acta, special issue dedicated to ‘Progress in Electrocatalysis: Theory and Practice’, 39 (1994) 1627.

    Google Scholar 

  11. C.F. Zinola, W.E. Triaca and A.J. Arvia, J. Appl. Electrochem. 25 (1995) 740.

    Google Scholar 

  12. A Damjanovic and V. Brusic, Electrochim. Acta 12 (1967) 615.

    Google Scholar 

  13. H. Wroblowa, M.L.B. Rao, A. Damjanovic and J.O'M. Bockris, J. Electroanal. Chem. 15 (1967) 139.

    Google Scholar 

  14. H. Kita, H. Lei and Y. Gao, J. Electroanal. Chem. 379 (1994) 407.

    Google Scholar 

  15. M. Drogowska, H. Menard and L. Brossard, J. Appl. Electrochem. 21 (1991) 84.

    Google Scholar 

  16. X.H. Xia, Electrochim. Acta 45 (1999) 1057.

    Google Scholar 

  17. A.S. Lapa, Deposited Doc. (1981) 575-582.

  18. M.O. Argüeso Mengod, Doctoral thesis ‘Electrodo de Platino Modi.cado por Adatomos de Estaño, Cobre y Plomo. Influencia de la Electrooxidación de n-propanol en ácido sulfúrico’ (Universidad de São Paulo, 1993).

  19. P. Berenz, S. Tillmann, H. Massong and H. Baltruschat, Electrochim. Acta 43 (1998) 3035.

    Google Scholar 

  20. H. Massong, S. Tillmann, T. Langkau, E.A. Abd El Meguid and H. Baltruschat, Electrochim. Acta 44 (1998) 1379.

    Google Scholar 

  21. B.J. Bowles, Nature 212 (1996) 1456.

    Google Scholar 

  22. B.J. Bowles and T.E. Cranshaw, Phys. Lett. 17 (1965) 258.

    Google Scholar 

  23. S.H. Cadle and S. Brückenstein, Anal. Chem. 43 (1971) 932.

    Google Scholar 

  24. N. Furuya and S. Motto, J. Electroanal. Chem. 72 (1976) 165.

    Google Scholar 

  25. H. Angerstein-Kozlowska, in E.B. Yeager, J.O'M. Bocris, B.E. Conway and S. Sarangapani (Eds) 'A Comprehensive Treatise of Electrochemistry’, Vol. 9 (Plenum Press, New York, 1984), chap. 2, p. 15.

    Google Scholar 

  26. C.F. Zinola, J. Tróccoli and J. Rodríguez, in preparation.

  27. A. Damjanovic, M.A. Genshaw and J.O'M. Bockris, J. Chem. Phys. 45 (1964) 4057.

    Google Scholar 

  28. Su-Moon Park, S. Ho, S. Aruliah, M. Weber, C. Ward, R. Venter and S. Srinivasan, J. Electrochem. Soc. 113 (1986) 1641.

    Google Scholar 

  29. J.D.E. Mc. Intyre and W.F. Peck Jr., ‘Chemistry and Physics of Electrocatalysis,’ Vol. 84-12, (1984), pp. 102-130.

    Google Scholar 

  30. C.F. Zinola, A.M. Castro Luna, W.E. Triaca and A.J. Arvia, J. Appl. Electrochem. 24 (1994) 531.

    Google Scholar 

  31. A.J. Appleby, J. Electroanal. Chem. 357 (1993) 117.

    Google Scholar 

  32. F. El Kadiri, R. Faure and R. Durand, J. Electroanal. Chem. 301 (1991) 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinola, C., Rodríguez, J. & Obal, G. Kinetics of molecular oxygen electroreduction on platinum modified by tin underpotential deposition. Journal of Applied Electrochemistry 31, 1293–1300 (2001). https://doi.org/10.1023/A:1013821319096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013821319096

Navigation