Skip to main content
Log in

Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In this paper we describe Southern blot hybridization results probed with 5S rRNA genes for several Neotropical fish species representing different taxonomic groups. All the studied species showed a general trend with the 5S rDNA tandem repeats organized in two distinct size-classes. At the same time, data on 5S rDNA organization in fish genome were summarized. Previous information on the organization and evolution of 5S rRNA gene arrays in the genome of this vertebrate group are in agreement with the Southern results here presented. Sequences obtained for several fish species have revealed the occurrence of two distinct 5S rDNA classes characterized by distinct non-transcribed spacer sequences, which are clustered in different chromosomes in some species. Moreover, the 5S rDNA loci are generally distributed in an interstitial position in the chromosomes and they are usually not syntenic to the 45S rDNA. The presence of two classes of 5S rDNA in several non-related fish species suggests that this could be a common condition for the 5S rRNA gene organization in the fish genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarasinghe, V. & J.E. Carlson, 1998. Physical mapping and characterization of 5S rRNA genes in douglas-fir. Amer. Gen. Assoc. 89: 495–500.

    Google Scholar 

  • Baker, W.J., T.A. Hedderson & J. Dransfield, 2000. Molecular phylogenetics of Calamus (Palmae) and related rattan genera based on 5S nrDNA spacer sequence data. Mol. Phyl. Evol. 14: 218–231.

    Google Scholar 

  • Belkhiri, A., J. Buchko & G.R. Klassen, 1992. The 5S ribosomal RNA gene in Pythium species: two different genomic locations. Mol. Biol. Evol. 9: 1089–1102.

    Google Scholar 

  • Born, G.G. & L.A.C. Bertollo, 2000. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus with a polymorphic NOR bearing X chromosome. Chrom. Res. 8: 111–118.

    Google Scholar 

  • Deiana, A.M., A. Cau, S. Salvadori, E. Coluccia, R. Cannas, A. Milia & J. Tagliavini, 2000. Major and 5S ribosomal sequences of the largemouth bass Micropterus salmoides (Perciformes, Centrarchidae) are localized in GC-rich regions of the genome. Chrom. Res. 8: 213–218.

    Google Scholar 

  • Dover, G.A., 1986. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet. 2: 159–165.

    Google Scholar 

  • Drouin, G. & M. Moniz de Sá, 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol. Biol. Evol. 12: 481–493.

    Google Scholar 

  • Elder Jr., J.F. & B.J. Turner, 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Quarter. Rev. Biol. 70: 277–320.

    Google Scholar 

  • Fischer, C., C. Ozouf-Costaz, H.R. Crollius, C. Dasilva, O. Jaillon, L. Bouneau, C. Bonillo, J. Weissenbach & A. Bernot, 2000. Karyotype and chromosomal location of characteristic tandem repeats in the pufferfish Tetraodon nigroviridis. Cytogenet. Cell Genet. 88: 50–55.

    Google Scholar 

  • Fontana, F., J. Tagliavini, L. Congiu, M. Lanfredi, M. Chicca, C. Laurente & R. Rossi, 1998. Karyotypic characterization of the great sturgeon, Huso huso, by multiple staining techniques and fluorescent in situ hybridization. Marine Biol. 132: 495–501.

    Google Scholar 

  • Fontana, F., M. Lanfredi, M. Chicca, L. Congiu, J. Tagliavini & R. Rossi, 1999. Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes, Acipenserifomes). Genome 42: 1008–1012.

    Google Scholar 

  • Frederiksen, S., H. Cao, B. Lomholt, G. Levan & C. Hallemberg, 1997. The rat 5S rRNA bona fide gene repeat maps to chromosome 19q122192qter and the pseudogene repeat maps to 12q12. Cytogenet. Cell Genet. 76: 101–106.

    Google Scholar 

  • Fujiwara, A., S. Abe, E. Yamaha, F. Yamazaki & M.C. Yoshida, 1998. Chromosomal localization and heterochromatin association of ribosomal RNA genes loci and silver stained nucleolar organizer regions in salmonid fishes. Chrom. Res. 6: 463–471.

    Google Scholar 

  • Hallenberg, C., J. Nederby-Nielsen & S. Frederiksen, 1994. Characterization of 5S rRNA genes from mouse. Gene 142: 291–295.

    Google Scholar 

  • Hanson, R.E., M.N. Islam-Faridi, E.A. Percival, C.F. Crane, Y. Ji, T.D. McKnight, D.M. Stelly & H.J. Price, 1996. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105: 55–61.

    Google Scholar 

  • Inafuku, J., M. Nabeyama, Y. Kikuma, J. Saitoh, S. Kibota & S. Kohno, 2000. Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces). Chrom. Res. 8: 193–199.

    Google Scholar 

  • Jacq, C., J.R. Miller & G.G. Brownlee, 1977. A pseudogene structure in 5S DNA of Xenopus laevis. Cell 12: 109–120.

    Google Scholar 

  • Kikuma, Y., J. Inafuku, S. Kubota & S. Kohno, 2000. Banding karyotype and 5S ribosomal DNA loci in the Japanese bitterling, Rhodeus ocellatus (Cyprinidae). Chrom. Sci. 3: 101–103.

    Google Scholar 

  • Komiya, H., M. Hasegawa & S. Takemura, 1986. Differentiation of oocyte-and somatic-type 5S rRNAs in animals. J. Biochem. 100: 369–374.

    Google Scholar 

  • Korn, L.J. 1982. Transcription of Xenopus 5S ribosomal RNA genes. Nature 295: 101–105.

    Google Scholar 

  • Lamond, A.I. & W.C. Earnshaw, 1998. Structure and function in the nucleous. Science 280: 547–553.

    Google Scholar 

  • Leah, R., S. Frederiksen, J. Engberg & P.D. Sorensen, 1990. Nucleotide sequence of a mouse 5S rRNA variant gene. Nucl. Acids Res. 18: 7441.

    Google Scholar 

  • Lewin, B., 1997. Genes VI. Oxford University Press. New York.

    Google Scholar 

  • Little, R. & D. Braaten, 1989. Genomic organization of human 5S rDNA and sequence of one tandem repeat. Genomics 4: 376–383.

    Google Scholar 

  • Lucchini, S., I. Nardi, G. Barsacchi, R. Batistoni & F. Andronico, 1993. Molecular cytogenetics of the ribosomal (18S+28S and 5S) DNA loci in primitive and advanced urodele amphibians. Genome 36: 762–773.

    Google Scholar 

  • Mäkinem, A., C. Zijlstra, N.A. De Haan, C.H.M. Mellink & A.A. Bosma, 1997. Localization of 18S plus 28S and 5S ribosomal RNA genes in the dog by fluorescence in situ hybridization. Cytogenet. Cell Genet. 78: 231–235.

    Google Scholar 

  • Mandrioli, M., M.S. Colomba & R. Vitturi, 2000. Chromosomal analysis of repeated DNAs in the rainbow wrasse Coris julis (Pisces, Labridae). Genetica 108: 191–195.

    Google Scholar 

  • Martínez, J.L., P. Morán, E. García-Vázquez & A.M. Pendás, 1996. Chromosomal localization of the major and 5S rRNA genes in the European eel (Anguilla anguilla). Cytogenet. Cell Genet. 73: 149–152.

    Google Scholar 

  • Martins, C. & P.M. Galetti Jr., 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res. 7: 363–367.

    Google Scholar 

  • Martins, C. & P.M. Galetti Jr., 2000 Conservative distribution of 5S rDNA loci in Schizodon (Pisces, Anostomidae) chromosomes. Chrom. Res. 8: 353–355.

    Google Scholar 

  • Martins, C., A.P. Wasko, C. Oliveira & J.M. Wright, 2000. Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the tilapiine cichlid fish, Oreochromis niloticus. Hereditas 133: 39–46.

    Google Scholar 

  • Martins, C. & P.M. Galetti Jr., 2001. Organization of 5S rDNA in Leporinus fish species: two different genomic locations are characterized by distinct non-transcribed spacers (NTSs). Genome 44: 903–910.

    Google Scholar 

  • Mellink, C.H.M., A.A. Bosma, N.A. de Haan & C. Zijlstra, 1996. Physical localization of 5S rRNA genes in the pig by fluorescence in situ hybridization. Hereditas 124: 95–97.

    Google Scholar 

  • Móran, P., J.L. Martínez, E. Garcia-Vásquez & A.M. Pendás, 1996. Sex linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss). Cytogenet. Cell Genet. 75: 145–150.

    Google Scholar 

  • Murakami, M. & H. Fujitani, 1998. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi). Genes Genet. Syst. 73: 9–20.

    Google Scholar 

  • Nederby-Nielsen, J., C. Hallenberg, S. Frederiksen, P.D. Sorensen & B. Lomholt, 1993. Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucl. Acids Res. 26: 3631–3636.

    Google Scholar 

  • Nieddu, M., G. Pichiri, P. Coni, S. Salvadori, A.M. Deiana & R. Mezzanotte, 1998. A comparative analysis of European and American eel (Anguilla anguilla and Anguilla rostrata) genomic DNA: 5S rDNA polymorphism permits the distinction between the two populations. Genome 41: 728–732.

    Google Scholar 

  • Pendás, A.M., P. Móran, J.P. Freije & E. Garcia-Vásquez, 1994. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 67: 31–36.

    Google Scholar 

  • Pendás, A.M., P. Móran, J.L. Martínez & E. Garcia-Vásquez, 1995. Applications of 5S rDNA in Atlantic salmon, brow trout, and in Atlantic salmon x brown trout hybrid identification. Mol. Ecol. 4: 275–276.

    Google Scholar 

  • Peterson, R.C., J.L. Doering & D.D. Brown, 1980. Characterization of two Xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell 20: 131–141.

    Google Scholar 

  • Philips, R.B. & K.M. Reed, 2000. Localization of repetitive DNAs to zebrafish (Danio rerio) chromosomes by fluorescence in situ hybridization (FISH). Chrom. Res. 8: 27–35.

    Google Scholar 

  • del Pino, E.M., C. Murphy, P.H. Masson & J.G. Gall, 1992. 5S rRNA-encoding genes of the marsupial frog Gastrotheca riobambae. Gene 111: 235–238.

    Google Scholar 

  • Rocco, L., C. Russo, V. Stingo, G. Aprea & G. Odierna, 1999. Characterisation of 5S rDNA in Gasterosteus aculeatus (Teleostei, Gasterosteidae). Ital. J. Zool. 66: 285–289.

    Google Scholar 

  • Rosenthal, D.S. & J.L. Doering, 1983. The genomic organization of dispersed tRNA and 5S RNA genes in Xenopus laevis. J. Biol. Chem. 258: 7402–7410.

    Google Scholar 

  • Sajdak, S.L., K.M. Reed & R.B. Phillips, 1998. Intraindividual and interspecies variation in the 5S rDNA of coregonid fish. J. Mol. Evol. 46: 680–688.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2nd edn.

    Google Scholar 

  • Schmid, M., L. Vitelli & R. Batistoni, 1987. Chromosome banding in Amphibia. IV. Constitutive heterochromatin, nucleolus organizers, 18S+28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95: 271–284.

    Google Scholar 

  • Sola, L., S. De Innocentiis, E. Gornung, S. Papalia, A.R. Rossi, G. Marino, P. De Marco & S. Cataudella, 2000. Cytogenetic analysis of Epinephelus marginatus (Pisces: Serranidae), with the chromosome localization of the 18S and 5S rRNA genes and of the (TTAGGG)n telomeric sequence. Marine Biol. 137: 47–51.

    Google Scholar 

  • Southern, E.M., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98: 503–517.

    Google Scholar 

  • Suzuki, H., K. Moriwaki & S. Sakurai, 1994. Sequences and evolutionary analysis of mouse 5S rDNAs. Mol. Biol. Evol. 11: 704–710.

    Google Scholar 

  • Suzuki, H., S. Sakurai & Y. Matsuda, 1996. Rat rDNA spacer sequences and chromosomal assignment of the genes to the extreme terminal region of chromosome 19. Cytogenet. Cell Genet. 72: 1–4.

    Google Scholar 

  • Tagliavini, J., P. Williot, L. Congiu, M. Chicca, M. Lanfredi, R. Rossi & F. Fontana, 1999. Molecular cytogenetic analysis of the karyotype of the European Atlantic sturgeon, Acipenser sturio. Heredity 83: 520–525.

    Google Scholar 

  • Vitelli, L., R. Batistoni, F. Andronico, I. Nardi & G. Barsacchi-Pilone, 1982. Chromosomal localization of 18S+28S and 5S ribosomal RNA genes in evolutionary divergent anuran amphibians. Chromosoma 84: 475–491.

    Google Scholar 

  • Williams, S.M. & C. Strobeck, 1985. Sister chromatid exchange and the evolution of rDNA spacer length. J. Theor. Biol.116: 625–636.

    Google Scholar 

  • Wasko A.P., C. Martins, J.M. Wright & P.M. Galetti Jr., 2001. Molecular organization of 5S rDNA in fishes of the genus Brycon. Genome 44: 893–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.M. Galetti Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, C., Galetti, P. Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes?. Genetica 111, 439–446 (2001). https://doi.org/10.1023/A:1013799516717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013799516717

Navigation