Skip to main content
Log in

Studies of Lead Zirconate Titanate Sol Ageing Part I: Factors Affecting Particle Growth

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The formation and growth of polymeric particles during the hydrolysis and condensation of PbZr0.3Ti0.7O3 (PZT 30/70) precursor solutions have been studied as functions of time by using photon correlation spectroscopy (PCS). Particle shape was deduced by measuring the rheological properties of the sols and was found to remain chain-like during sol ageing. Various factors that affect the ageing of PZT sols have been investigated. Ethylene glycol (EG) was found to greatly accelerate the hydrolysis and condensation of the acid-modified Pb-free Zr/Ti solutions but had little effect on the particle growth for the Pb-containing PZT sols. Temperature and H2O concentration were found to have major effects on the ageing behaviors. The higher the temperature and H2O concentration, the higher the particle growth rates and the faster the sol gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott and C.A. Paz de Araujo, Science: Ferroelectric Memories 19, 400 (1989).

    Google Scholar 

  2. P. Lesaicherre, S. Yamamichi, K. Takemura, H. Yamaguchi, K. Tokashiki, Y. Miyasaka, M. Yoshida, and H. Ono, Int. Ferroelectrics 11, 81 (1995).

    Google Scholar 

  3. P. Muralt, A. Kholkin, M. Kohli, T. Maeder, K.G. Brooks, and R. Luthier, Int. Ferroelectrics 11, 213 (1995).

    Google Scholar 

  4. R.W. Whatmore, P. Kirby, A. Patel, N.M. Shorrocks, T. Bland, and M. Walker, in Proceedings NATO Advanced Research Workshop on Science and Technology of Electroceramic Thin Films, Villa del Mare, Italy, June 20-24, edited by O. Auciello and R. Waser (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995), p. 383.

    Google Scholar 

  5. G. Teowee and C.D. Baetlein, Int. Ferroelectrics 11, 47 (1995).

    Google Scholar 

  6. M. Sayer, in Proceedings 1991 Ultrasonics Symposium, edited by B.R. McAvoy (IEEE, Piscataway, NJ, 1991), p. 595.

    Google Scholar 

  7. K. Sreenivas, M. Sayer, D.J. Baar, and M. Nishioka, Appl. Phys. Lett. 52, 709 (1998).

    Google Scholar 

  8. J.F. Scott, Phys. World 8, 46 (1995).

    Google Scholar 

  9. C.A. Paz de Araujo and G.W. Taylor, Ferroelectrics 116, 215 (1991).

    Google Scholar 

  10. M. Sayer, Z. Wu, C.V.R. Vasant Kumar, D.T. Amm, and E.M. Griswold, Can. J. Phys. 70, 1159 (1992).

    Google Scholar 

  11. M. Sayer, Int. Ferroelectrics 1, 151 (1992).

    Google Scholar 

  12. S.R. Gurkovich and J.B. Blum, Ferroelectrics 62, 189 (1985).

    Google Scholar 

  13. K.D. Budd, S.K. Dey, and D.A. Payne, Brit. Ceram. Soc. Proc. 36, 107 (1985).

    Google Scholar 

  14. R.A. Assink and R.W. Schwartz, Chem. Mater. 5(4), 511 (1993).

    Google Scholar 

  15. H.M. Jang and M.K. Cho, J. Am. Ceram. Soc. 79(6), 1435 (1996).

    Google Scholar 

  16. G. Yi and M. Sayer, Ceram. Bull. 70, 1173 (1991).

    Google Scholar 

  17. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 64, 2717 (1988).

    Google Scholar 

  18. R.W. Schwartz, B.C. Bunker, D.B. Dimos, R.A. Assink, B.A. Tuttle, D.R. Tallant, and I.A.Weinstock, in Proc. 3rd Int. Symp. Integ. Ferroelect. (Colorado Springs, CO., 1992), p. 535.

  19. R.W. Schwartz, R.A. Assink, and T.J. Headley, in Ferroelectric Thin Films II, edited by A.I. Kingon, E.R. Myers, and B. Tuttle Mat. Res. Soc. Symp. Proc. 243 (1992), p. 245.

  20. J. Livage, M. Henry, and C. Sanchez, J. Phys. Sol. State. Ceram. 18, 299 (1992).

    Google Scholar 

  21. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Sol. 89, 206 (1987).

    Google Scholar 

  22. J. Livage, C. Sanchez, M. Henry, and S. Doeuff, Sol. St. Ionics 32/33, 633 (1989).

    Google Scholar 

  23. K. Kushida, K.R. Udayakumar, S.B. Krupanidhi, and L.E. Rhine, J. Am. Ceram. Soc. 76(5), 1345 (1989).

    Google Scholar 

  24. R.W. Schwartz, B.C. Bunker, D.B. Dimos, R.A. Assink, B.A. Tuttle, D.R. Tallant, and I.A. Weinstock, Int. Ferroelectrics 2, 243 (1992).

    Google Scholar 

  25. R.W. Schwartz, J.A. Voigt, B.A. Tuttle, D.A. Payne, T.L. Reichert, and R.S. DaSalla, J. Mater. Res. 12(2), 444 (1997).

    Google Scholar 

  26. T.J. Boyle, D. Dimos, R.W. Schwartz, T.M. Alam, M.B. Sinclair, and C.D. Buchheit, J. Mater. Res. 12 (4), 1022 (1997).

    Google Scholar 

  27. Q. Zhang, M.E. Vickers, R.W. Whatmore, and A. Patel, J. Solgel. Sci. &;; Technol. 11, 141 (1998).

    Google Scholar 

  28. Q. Zhang, R.W. Whatmore, M.E.Vickers, and A. Patel, J.Korean Phys. Soc. 32, S572 (1998).

    Google Scholar 

  29. Q. Zhang, Z. Huang, M.E. Vickers, and R.W. Whatmore, Int. Ferroelectrics 23, 215 (1999).

    Google Scholar 

  30. C. Sanchez and J. Livage, New J. Chem. 14, 513 (1990); G. Kickelbick, U. Schubert, Mat. Res. Soc. Symp. Proc. 519, 401 (1998).

    Google Scholar 

  31. W.G. Klemperer, V.V. Mainz, and D.M. Miller, in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mat. Res. Soc., 1986), p. 3.

  32. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 75(5), 2717 (1988).

    Google Scholar 

  33. O. Glatter and O. Kratky, Small Angle X-ray Scattering (Academic Press, London, 1982).

    Google Scholar 

  34. M.L. Huggins, J. Am. Chem. Soc. 64, 2716 (1942).

    Google Scholar 

  35. A. Einstein, Ann. Phys. 19, 289 (1906).

    Google Scholar 

  36. A. Tager, Physical Chemistry of Polymers (Mir Publishers, Moscow, 1978), Ch. 15, p. 469.

    Google Scholar 

  37. W.G. Klemperer, V.V. Mainz, and D.M. Millar, Mat. Res. Symp. Proc. 73, 3 (1986); W.G. Klemperer, V.V. Mainz, and D.M. Miller, Mat. Res. Symp. Proc. 73, 15 (1986).

    Google Scholar 

  38. G. Yi and M. Sayer, J. Sol-gel. Sci. &;; Technol. 6, 65 (1996).

    Google Scholar 

  39. C. Sanchez, F. Babonneau, S. Doeuff, and A. Leaustic, in Ultrastructure Processing of Advances Ceramics, edited by J.D. Machenzie and D.R. Ulrich (Wiley, New York, 1988).

    Google Scholar 

  40. D. Barrow, C.V.R. Vassant Kumar, R. Pascual, and M. Sayer, Mater. Res. Soc. Symp. Proc. 243, 113 (1992).

    Google Scholar 

  41. G. Yi, Z. Wu, M. Sayer, C.K. Jen, and J.F. Bussiere, Ceram. Trans. 11, 363 (1990).

    Google Scholar 

  42. D.C. Bradley, R.C. Mehrotra, and D.D. Gaur, Metal Alkoxides (Academic Press, New York, 1978), p. 18.

    Google Scholar 

  43. Z. Huang, Q. Zhang, and R.W. Whatmore, J. Sol-Gel. Sci. Technol submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Huang, Z. & Whatmore, R. Studies of Lead Zirconate Titanate Sol Ageing Part I: Factors Affecting Particle Growth. Journal of Sol-Gel Science and Technology 23, 135–144 (2002). https://doi.org/10.1023/A:1013799417981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013799417981

Navigation