Skip to main content
Log in

Role Played by Water–Protein Surrounding of Cofactors in Picosecond Electron Transport Steps in Photosynthesis Reaction Centers

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Effect of the water–protein environment of cofactors on the rates and efficiency of conversion of light energy into the energy of a photochemical potential in reaction centers of purple bacterium Rhodobacter sphaeroides is studied. The environment is modified by isotopic replacement D2O → H2O or by adding glycerol and dimethyl sulfoxide (DMSO). The replacement D → H is shown to makes no impact on the midpoint potential E m of the electron donor, whereas addition of 70 vol % of glycerol or 35 vol % of DMSO raises E m by 30 and 45 mV, respectively. Rate constants of charge separation k e and electron transport onto quinone k Q remained unchanged following glycerol addition, while deuteration and DMSO addition diminished k e and k Q by two to three times. In addition to the known component with a characteristic time of about 10 ns, a component with a duration of 0.5–0.8 ns appears in the recombination kinetics of charges of deuterated and DMSO-treated preparations of reaction centers. The mechanism of the environment response on the emergence of nonequilibrium states of cofactors is analyzed theoretically. The energy model proposed for primary processes of photosynthesis accounts for the contribution made by the environment in the realization of a highly effective electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Allen, J.P., Feher, G., Yeates, T.O., et al., Proc. Natl. Acad. Sci. USA, 1998, vol. 85, p. 8447.

    Google Scholar 

  2. Chong, C.–H., El–Kabbani, O., Tiede, D., et al., Biochemistry, 1991, vol. 30, p. 3552.

    Google Scholar 

  3. Ermler, U., Fritsch, G., Buchanan, S.K., and Michel, H., Structure, 1994, vol. 2, p. 925.

    Google Scholar 

  4. Fleming, G.R. and Van Grondell, R., Phys. Today, 1994, vol. 47, p. 48.

    Google Scholar 

  5. Shuvalov, V.A. and Dysens, L.N.M., Proc. Natl. Acad. Sci. USA, 1986, vol. 83, p. 1690.

    Google Scholar 

  6. Holzapfel, W., Finkele, U., Kaiser, W., et al., Chem. Phys. Lett., 1989, vol. 160, p. 1.

    Google Scholar 

  7. Holzwarth, A.R. and Muller, M.G., Biochemistry, 1996, vol. 35, p. 11820.

    Google Scholar 

  8. Van Stokkum, I.H.M., Beekman, L.M.P., Jones, M.R., and Van Grondelle, R., Biochemistry, 1997, vol. 36, p. 11360.

    Google Scholar 

  9. Borisov, A.Yu., Biochem. Mol. Biol. Int., 1995, vol. 35, p. 833.

    Google Scholar 

  10. Krasil'nikov, P.M., Pashchenko, V.Z., Knox, P.P., and Rubin, A.B., Dokl. Akad. Nauk, 2001, vol. 376, p. 1.

    Google Scholar 

  11. Mattioli, T.A., Williams, J.C., Allen, J.P., and Robert, B., Biochemistry, 1994, vol. 33, p. 1636.

    Google Scholar 

  12. Lin, X., Murchison, H.A., Nagarajan, V., et al., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, p. 10265.

    Google Scholar 

  13. Williams, J.C., Alden, R.G., Murchison, H.A., and Peloquin, J.M., Biochemistry, 1992, vol. 31, p. 11029.

    Google Scholar 

  14. Murchison, M.A., Alden, R.G., Allen, J.P., et al., Biochemistry, 1993, vol. 32, p. 3498.

    Google Scholar 

  15. Lin, X., Williams, J.C., Allen, J.P., and Mathis, P., Biochemistry, 1994, vol. 33, p. 13517.

    Google Scholar 

  16. Paschenko, V.Z., Korvatovsky, B.N., Logunov, S.L., et al., FEBS Lett., 1987, vol. 214, p. 28.

    Google Scholar 

  17. Paschenko, V.Z., Gorokhov, V.V., Grishanova, N.P., et al., Biochim. Biophys. Acta, 1998, vol. 1364, p. 361.

    Google Scholar 

  18. Paschenko, V.Z., Knox, P.P., Chamorovsky, S.K., et al., Bioelectrochem. Bioenegr., 2001, vol. 53, p. 233.

    Google Scholar 

  19. Pashchenko, V.Z., Biofizika, 2000, vol. 45, p. 461.

    Google Scholar 

  20. Zakharova, N.I. and Churbanova, I.Yu., Biokhimiya, 2000, vol. 65, p. 181.

    Google Scholar 

  21. Chamorovskii, S.K., Mamedov, M.D., Semenov, A.Yu., et al., Dokl. Akad. Nauk, 1998, vol. 361, p. 120.

    Google Scholar 

  22. Jackson, J.B., Cogdell, R.J., and Croft, A.R., Biochim. Biophys. Acta, 1973, vol. 290, p. 218.

    Google Scholar 

  23. Ogrodnik, A., Hartwich, G., Lossau, H., and Michel–Beyerle, M.E., Chem. Phys., 1999, vol. 244, p. 461.

    Google Scholar 

  24. Krasil'nikov, P.M., Gorokhov, V.V., Goryacheva, E.A., et al., Biomembrany, 2000, vol. 17, p. 271.

    Google Scholar 

  25. Brown, W.F., Jr., Handbuch der Physik, Flugge, S., Ed., Berlin: Springer, 1956, vol. 17, part 1.

    Google Scholar 

  26. Fritzsch, G., Kampmann, L., Kapaun, G., and Michel, H., Photosynth. Res., 1998, vol. 55, p. 127.

    Google Scholar 

  27. Kukushkin, Yu.N., Soros. Obr. Zh., 1997, no. 9, p. 54.

  28. Aksenov, S.I., Gavrilova, I.I., Gangard, M.G., and Revokatov, O.P., Kriobiologiya, 1985, no. 4, p. 31.

  29. Luck, W.A.P., Acta Chim. Hung., 1986, vol. 121, p. 119.

    Google Scholar 

  30. Kleeberg, H., J. Phys. Chem., 1986, vol. 90, p. 4427.

    Google Scholar 

  31. Rischel, C., Spiedel, D., Ridge, J.P., et al., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, p. 12306.

    Google Scholar 

  32. Grant, E.A., Sheppard, R.J., and South, G.H., Dielectric Behaviour of Biological Molecules in Solution, Oxford: Clarendon, 1998.

    Google Scholar 

  33. Maroucelli, M., Castner, S., Webb, S.P., and Fleming, G.R., Solvation Dynamics in Polar Liquids: Experiment and Simulation, Colorado: Snowmass, 1986, p. 268.

    Google Scholar 

  34. Volk, M., Aumeier, G., Langenbacher, T., et al., J. Phys. Chem. B, 1998, vol. 102, p. 735.

    Google Scholar 

  35. Hartwich, G., Lossau, H., Michel–Beyerle, M.E., and Ogrodnik, A., J. Phys. Chem., 1996, vol. 102, p. 3815.

    Google Scholar 

  36. Boonstra, A.F., Wisschers, R.W., Caalkoen, F., et al., Biochim. Biophys. Acta, 1995, vol. 1142, p. 181.

    Google Scholar 

  37. Dracheva, T.V., Novoderezhkin, V.I., and Razjivin, A.P., Photosynth. Res., 1996, vol. 49, p. 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashchenko, V.Z., Grishanova, N.P., Knox, P.P. et al. Role Played by Water–Protein Surrounding of Cofactors in Picosecond Electron Transport Steps in Photosynthesis Reaction Centers. Russian Journal of Electrochemistry 38, 88–96 (2002). https://doi.org/10.1023/A:1013794529892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013794529892

Keywords

Navigation