Skip to main content
Log in

Transgenic Goats in the World Pharmaceutical Industry of the 21st Century

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In many developed countries, isolation of human pharmaceutical proteins from milk of genetically modified animals is currently a priority. One of the first commercial pharmaceuticals obtained from the milk of transgenic goats, an anticoagulant antithrombin III, developed by Genzyme Transgenic Corporation, an American biotechnological company, will appear on the pharmaceutical market in the nearest future. In this review, we discuss the role of fundamental science in the development of this field of the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Clark, A.J., Ali, S., Archibald, A.L., et al., The Molecular Manipulation of Milk Composition, Genome, 1989, vol. 31, pp. 950-955.

    Google Scholar 

  2. Wall, R.J., Biotechnology for Production of Modified and Innovative Animal Products: Transgenic Livestock Bioreactors, Proc. Special Symp. and Plenary Sessions: The 8th World Conf. on Animal Production, June 28July 4, 1999, Seoul: Seoul Nat. Univ., 1998, pp. 364-377.

    Google Scholar 

  3. Pollock, D.P., Kutzko, J.P., Birck-Wilson, E., et al., Transgenic Milk as a Method for the Production of Recombinant Antibodies, J. Immunol. Methods, 1999, vol. 237, pp. 147-157.

    Google Scholar 

  4. Goldman, I.L., Zakharova, E.S., Yakubovskaya, R.I., et al., Lactoferrin: Properties and Prospects of Biotechnological Production, Biotechnologiya, 1998, no. 4, pp. 3-16.

  5. Goldman, I.L., Ernst, L.K., Brem, G., et al., Construc-tion of Transgenic Sheep That Produce Milk Containing Physiologically Active Proteins in Conditions of a Breeding Farm, S-kh. Biol., 1994, no. 6, pp. 46-53.

  6. Wight, G., Carver, A., Cottom, D., et al., High-Level Expression of Active Human a-L-Antitrypsin in the Milk of Transgenic Sheep, Bio/Technology, 1991, vol. 9, pp. 830-834.

  7. Adachi, T., Ahn, J.Y., Yamamoto, K., et al., Characterization of the Bovine k-Casein Gene Promoter, Biosci. Biotechnol. Biochem., 1996, vol. 60, pp. 1937-1940.

    Google Scholar 

  8. Ninomiya, T., Hirabayashi, M., Sagara, J., and Yuki, A., Functions of Milk Protein Gene 5′-Flanking Regions on Human Growth Hormone Gene, Mol. Reprod. Dev., 1994, vol. 37, pp. 276-283.

    Google Scholar 

  9. Soulier, S., Vilotte, J.L., Stinakre, M.G., and Mercier, J.C., Expression Analysis of Ruminant α-Lactalbumin in Transgenic Mice: Developmental Regulation and General Location of Important cis-Regulatory Elements, FEBS Lett., 1992, vol. 297, pp. 13-18.

    Google Scholar 

  10. Vilotte, J.L., Soulier, S., Stinnakre, M.G., et al., Efficient Tissue-Specific Expression of Bovine α-Lactalbumin in Transgenic Mice, Eur. J. Biochem., 1989, vol. 186, pp. 43-48.

    Google Scholar 

  11. Bleck, G.T. and Bremel, R.D., Variation in Expression of a Bovine α-Lactalbumin Transgene in Milk of Transgenic Mice, J. Dairy Sci., 1994, vol. 77, pp. 1897-1904.

    Google Scholar 

  12. Bleck, G.T., White, B.R., Miller, D.J., and Wheeler, M.B., Production of Bovine α-Lactalbumin in the Milk of Transgenic Pigs, J. Anim. Sci., 1998, vol. 76, pp. 3072-3078.

    Google Scholar 

  13. Hyttinen, J.M., Korhonen, V.P., Hiltunen, M.O., et al., High-Level Expression of Bovine β-Lactoglobulin Gene in Transgenic Mice, J. Biotechnol., 1998, vol. 61, pp. 191-198.

    Google Scholar 

  14. Archibald, A.L., McClenanghan, M., Hornsey, V., et al., High-Level Expression of Biologically Active Human α1-Antitrypsin in the Milk of Transgenic Mice, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 5178-5182.

    Google Scholar 

  15. Bijvoet, A.G., Kroos, M.A., Pieper, F.R., et al., Recombinant Human Acid α-Glucosidase: High-Level Production in Mouse Milk, Biochemical Characteristics, Correction of Enzyme Deficiency in GSDII KO Mice, Hum. Mol. Genet., 1998, vol. 7, pp. 1815-1824.

    Google Scholar 

  16. Meade, H., Gates, L., Lacy, E., and Lonberg, N., Bovine aS1-Casein Gene Sequences Direct High-Level Expression of Active Human Urokinase in Mouse Milk, Biotechnology, 1990, vol. 8, pp. 443-446.

    Google Scholar 

  17. Brem, G., Hartl, P., Besenfelder, U., et al., Expression of Synthetic cDNA Sequences Encoding Human Insulin-like Growth Factor-1 (IGF-1) in the Mammary Gland of Transgenic Rabbits, Gene, 1994, vol. 149, pp. 351-355.

    Google Scholar 

  18. Rijnkels, M., Kooiman, P.M., Platenburg, G.J., et al., High-Level Expression of Bovine αS1-Casein in Milk of Transgenic Mice, Transgenic Res., 1998, vol. 7, pp. 5-14.

    Google Scholar 

  19. Ebert, K.M., Di Tullio, P., Cathleen, A., et al., Induction of Human Tissue Plasminogen Activator in the Mammary Gland of Transgenic Goats, Biotechnology, 1994, vol. 12, no. 7, pp. 690-702.

    Google Scholar 

  20. Edmunds, T., Van Patten, S.M., Pollock, J., et al., Transgenically Produced Human Antithrombin: Structural and Functional Comparison to Human Plasma-Derived Anti-thrombin, Blood, 1998, vol. 91, no. 12, pp. 4561-4571.

    Google Scholar 

  21. Gavin, W.G., Pollock, D., Fell, P., et al., Expression of the Antibody HBR96 in the Milk of Transgenic Mice and Production of HBR96 Transgenic Goats, Theriogenology, 1997, vol. 47, p. 214.

    Google Scholar 

  22. Rijnkels, M., Kooiman, P.M., Krimpenfort, P.J., et al., Expression Analysis of the Individual Bovine β-, αS2-and κ-Casein Genes in Transgenic Mice, Biochem. J., 1995, vol. 311, pp. 929-937.

    Google Scholar 

  23. Cerdan, M.G., Young, J.I., Zino, E., et al., Accurate Spatial and Temporal Transgene Expression Driven by a 3.8-Kilobase Promoter of the Bovine β-Casein Gene in the Lactating Mouse Mammary Gland, Mol. Reprod. Dev., 1998, vol. 49, pp. 236-245.

    Google Scholar 

  24. Kim, S.J., Sohn, B.H., Jeong, S., et al., High-Level Expression of Human Lactoferrin in Milk of Transgenic Mice Using Genomic Lactoferrin Sequence, J. Bio-chem., 1999, vol. 126, pp. 320-325.

    Google Scholar 

  25. Oh, K.B., Choi, Y.H., Kang, Y.K., et al., A Hybrid Bovine β-Casein/BGH Gene Directs Transgene Expression to the Lung and Mammary Gland of Transgenic Mice, Transgenic Res., 1999, vol. 8, pp. 307-311.

    Google Scholar 

  26. Wall, R.J., Pursel, V.G., Shanay, A., et al., High-Level Synthesis of a Heterologous Milk Protein in the Mammary Glands of Transgenic Swine, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 1696-1700.

    Google Scholar 

  27. Razin, S.V., The Nuclear Matrix and Spatial Organiza-tion of Chromosomal DNA Domains, Austin, Tex.: Landes, 1997.

    Google Scholar 

  28. Grovseld, F., Activation by Locus Control Regions?, Curr. Opin. Genet. Dev., 1999, vol. 9, pp. 152-157.

    Google Scholar 

  29. Grosveld, F., van Assendelft, G.B., Greaves, D.R., and Kollias, G., Position-Independent, High-Level Expression of the Human β-Globin Gene in Transgenic Mice, Cell (Cambridge, Mass.), 1987, vol. 51, pp. 975-985.

    Google Scholar 

  30. Bode, J., Schlake, T., Rios-Ramirez, M., et al., Scaffold/ Matrix-Attached Regions: Structural Properties Creating Transcriptionally Active Loci, Int. Rev. Cytol., 1995, vol. 162A, pp. 389-454.

    Google Scholar 

  31. Castilla, J., Pintado, B., Sola, I., et al., Engineering Passive Immunity in Transgenic Mice Secreting Virus-Neutralizing Antibodies in Milk, Nat. Biotechnol., 1998, vol. 16, pp. 349-354.

    Google Scholar 

  32. Razin, S.V., Verbovaya, L.V., and Goldman, I.L., New Approaches to Construction of Transgenic Animals with High-Level Tissue-Specific Expression of Foreign Genes: Construction and Reconstruction of Genomic Domains, Genetika (Moscow), 2000, vol. 36, no. 11, pp. 1443-1453.

    Google Scholar 

  33. Bonifer, C., Huber, M.C., Faust, N., and Sippel, A.E., Regulation of the Chicken Lysozyme Locus in Transgenic Mice, Crit. Rew. Eukaryot. Gene, 1996, vol. 6, pp. 285-297.

    Google Scholar 

  34. Talbot, D., Descombes, P., and Schibler, U., The 5′-Flanking Region of the Rat LAP (C/EBP-β) Gene Can Direct High-Level, Position-Independent, Copy Number-Dependent Expression in Multiple Tissues in Transgenic Mice, Nucleic Acids Res., 1994, vol. 22, pp. 756-766.

    Google Scholar 

  35. Ortiz, B.D., Cado, D., and Winoto, A., A New Element within the T-Cell Receptor ??Locus Required for Tissue-Specific Locus Control Region Activity, Mol. Cell. Biol., 1999, vol. 19, pp. 1901-1909.

    Google Scholar 

  36. Taboit-Dameron, F., Malassagne, B., Viglietta, C., et al., Association of the 5'HS4 Sequence of the Chicken β-Globin Locus Control Region with Human EF1 ??Gene Promoter Induces Ubiquitous and High Expression of Human CD55 and D59 cDNAs in Transgenic Rabbits, Transgenic Res., 1999, vol. 8, pp. 223-235.

    Google Scholar 

  37. Kerr, D.E., Liang, F., Bondioli, K.R., et al., The Bladder as a Bioreactor: Urothelium Production and Secretion of Growth Hormone into Urine, Nat. Biotechnol., 1998, vol. 16, pp. 75-79.

    Google Scholar 

  38. Dyck, M.K., Gagne D., Ouellet, M., et al., Seminal Vesicle Production and Secretion of Growth Hormone into Seminal Fluid, Nat. Biotechnol., 1999, vol. 17, pp. 1087-1090.

    Google Scholar 

  39. Wall, R.J., A New Lease on Life for Transgenic Livestock, Nat. Biotechnol., 1997, vol. 15, pp. 416-417.

    Google Scholar 

  40. Millz, O., Molochnoe ovtsevodstvo (Milk Sheep Breeding), Moscow: Agropromizdat, 1995.

    Google Scholar 

  41. Wineland, N.E., Detwiler, L.A., and Salman, M.D., Epidemiological Analysis of Reported Scrapie in Sheep in the United States: 1117 Cases (1947-1992), J. Am. Vet. Med. Assoc., 1998, vol. 212, p. 713.

    Google Scholar 

  42. Ko, J.H., Lee, C.S., Kim, K.H., et al., Production of Biologically Active Human Granulocyte Colony-Stimulating Factor in the Milk of Transgenic Goat, Transgenic Res., 2000, vol. 9, no. 3, pp. 215-222.

    Google Scholar 

  43. Park, Y.I., Sheep and Goats, World Conference in Animal Production: Animal Agriculture in Korea, Jung, J.K., Ed., Seoul, 1998, ch. 5, pp. 40-46.

  44. Karatzas, C.N. and Turner, J.D., Toward Altering Milk Composition by Genetic Manipulation: Current Status and Challenges, J. Dairy Sci., 1997, vol. 80, pp. 2225-2232.

    Google Scholar 

  45. FAO Production Year Book, Rome: FAO, 1996, vol. 50, p. 31.

  46. Dove, A., Milking the Genome for Profit, Nat. Biotechnol., 2000, vol. 18, pp. 1045-1048.

    Google Scholar 

  47. Park, Y.W., Hypo-Allergenic and Therapeutic Significance of Goat Milk, Small Ruminant Res., 1994, vol. 14, pp. 151-159.

    Google Scholar 

  48. Archer, J.S., Kennan, W.S., Gould, M.N., et al., Human Growth Hormone (hGH) Secretion in Milk of Goats after Direct Transfer of the hGH Gene into the Mam-mary Gland by Using Replication-Defective Retrovirus Vectors, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 15, pp. 6840-6844.

    Google Scholar 

  49. Zhang, K., Lu, D., Xue, J., et al., Construction of Mam-mary Gland-Specific Expression Vectors for Human Clotting Factor IX and Its Secretory Expression in Goat Milk, China J. Biotechnol., 1997, vol. 13, no. 4, pp. 271-276.

    Google Scholar 

  50. Huynh, H.T., Robitaille, G., and Turner, J.D., Establishment of Bovine Mammary Epithelial Cells (MAC-T): An In Vitro Model for Bovine Lactation, Exp. Cell Res., 1991, vol. 197, pp. 191-199.

    Google Scholar 

  51. Lin, Y., Xia, L., Turner, J.D., and Zhao, X., Morphologic Observation of Neutrophil Diapedesis in Bovine Mammary Gland Epithelium in Vitro, Am. J. Vet. Res., 1995, vol. 56, pp. 203-207.

    Google Scholar 

  52. Woodward, T.L., Turner, J.D., Huang, H.T., and Zhao, X., Inhibition of Cellular Proliferation and Modulation of Insulin-like Growth Factor Binding Proteins by Retinoids in a Bovine Mammary Epithelial Cell Line, J. Cell Physiol., 1996, vol. 167, pp. 488-499.

    Google Scholar 

  53. Woodward, T.L., Dumont, J., O'Connor-McCourt, M., et al., Characterization of Transforming Growth Factor-??Growth Regulatory Effects and Receptors on Bovine Mammary Cells, J. Cell Physiol., 1995, vol. 165, pp. 339-348.

    Google Scholar 

  54. Shani, M., Barash, I., Nathan, M., et al., Expression of Human Serum Albumin in the Milk of Transgenic Mice, Transgenic Res., 1992, vol. 1, no. 5, pp. 195-208.

    Google Scholar 

  55. Schnieke, A.E., Kind, A.J., Ritchie, W.A., et al., Human Factor IX Transgenic Sheep Produced by Transfer of Nuclei from Transfected Fetal Fibroblasts, Science, 1997, vol. 278, pp. 2130-2133.

    Google Scholar 

  56. Cibelli, J.B., Stice, S.L., Golueke, P.J., et al., Cloned Transgenic Calves Produced from Nonquiescent Fetal Fibroblasts, Science, 1998, vol. 280, pp. 1256-1258.

    Google Scholar 

  57. Riot, K.D., Vadnere, S.V., and Prakash, P., Hormonal Induction of Lactation and Histomorphology of Mammary Glands in Prepubertal Goats, Indian J. Anim. Res., 1989, vol. 10, pp. 9-51.

    Google Scholar 

  58. Cammusio, C., Poreter, C., Nims, S., et al., Hormonal Induced Lactation in Transgenic Goats, Anim. Biotechnol., 2000, vol. 11, no. 1, pp. 1-17.

    Google Scholar 

  59. Baguisi, A., Behboodi, E., Melican, D.T., et al., Production of Goats by Somatic Cell Nuclear Transfer, Nat. Biotechnol., 1999, vol. 17, pp. 456-461.

    Google Scholar 

  60. Goldman, I.L., Popov, L.S., Kadulin, S.G., et al., Problems of Intellectual Property in Biotechnology: Transgenic Animals, Biotechnologiya, 1998, no. 3, pp. 43-61.

  61. Breekveldt, J. and Jongerden, J., Transgenic Animals in Pharmaceutical Production, Biotechnol. Dev. Monitor., 1998, no. 36, pp. 19-22.

  62. Mukhtar, M., Parveen, Z., and Pomerantz, R.J., Technology Evaluation: PRO-542, Progenics Pharmaceuticals Inc., Curr. Opin. Mol. Ther., 2000, vol. 2, no. 6, pp. 697-702.

    Google Scholar 

  63. Zhang, J., Lao, W., Cheng, G., et al., Expression of HBsAg Gene in Transgenic Goats under Direction of Bovine αS1-Casein Control Sequence, China J. Biotechnol., 1997, vol. 13, no. 2, pp. 99-104.

    Google Scholar 

  64. First Transgenic Trial in Japan, Nat. Biotechnol., 1998, vol. 16.

  65. Biotechnology New, 1997, p. 8.

  66. Gordon, J.W., Scangos, C.A., Plotkin, D.J., et al., Genetic Transformation of Mouse Embryos by Microinjection of Purified DNA, Proc. Natl. Acad. Sci. USA, 1980, vol. 77, pp. 7380-7384.

    Google Scholar 

  67. Brinster, R.L., Chen, H.Y., and Palmiter, R.D., Regulation of Metallothioneine-Thymidine Kinase Fusion Plasmids Injected into Mouse Eggs, Nature, 1982, vol. 296, pp. 39-42.

    Google Scholar 

  68. Hammer, R.E., Pursel, V.G., Rexroad, C.E., Jr., et al., Production of Transgenic Rabbits, Sheep and Pigs by Microinjection, Nature, 1985, vol. 315, pp. 680-683.

    Google Scholar 

  69. Gordon, K., Lee, E., Vitale, J.A., et al., Production of Human Tissue Plasminogen Activator in Transgenic Mouse Milk, Biotechnology, 1987, vol. 5, pp. 1183-1187.

    Google Scholar 

  70. Simons, J.P., Wilmut, J., Clark, A.J., et al., Gene Transfer into Sheep, Biotechnology, 1988, vol. 6, pp. 179-183.

    Google Scholar 

  71. Ebert, K.M., Selgrath, J.P., Di Tullio, P., et al., Transgenic Production of a Variant of Human Tissue-Type Plasminogen Activator in Goat Milk, Biotechnology, 1991, vol. 9, pp. 835-838.

    Google Scholar 

  72. Wall, R.J., Pursel, V.G., Shamay, A., et al., High-Level Synthesis of a Heterologous Milk Protein in the Mammary Glands of Transgenic Swine, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, no. 5, pp. 1696-1700.

    Google Scholar 

  73. Krimpenfort, P., Rademakers, A., Eyestone, W., et al., Generation of Transgenic Dairy Cattle Using “in Vitro” Embryo Production, Biotechnology, 1991, vol. 9, pp. 844-847.

    Google Scholar 

  74. Schnieke, A.E., Kind, A.J., Ritchie, W.A., et al., Human Factor IX Transgenic Sheep Produced by Transfer of Nuclei from Transfected Fetal Fibroblasts, Science, 1997, vol. 278, pp. 2130-2133.

    Google Scholar 

  75. Bashkeev, E.D., Goldman, I.L., Dolgashev, A.V., et al., A Technique to Obtain Sheep Zygotes, Zootekhniya, 1989, no. 11, pp. 56-57.

    Google Scholar 

  76. Semenova, V.A., Goldman, I.L., Bazylev, S.E., et al., Transplantation of Rabbit Zygotes Microinjected with Recombinant DNA, Dokl. Vses. Akad. S-kh. Nauk, 1990, no. 11, pp. 51-54.

  77. Gazaryan, K.G., Kuznetsova, E.D., Eshkind, L.G., et al., Microinjection of Simian Adenovirus Sa7 DNA into the Mouse Zygotes: Differential Distribution of Viral DNA in Organs, Cell Diff., 1984, vol. 14, no. 10, pp. 267-276.

    Google Scholar 

  78. Gorodetskii, S.I., Dyban, A.P., Vaisman, G.F., et al., Stimulation and Suppression of the Growth in Mice Carrying the Human Growth Hormone Gene, Byull. Eksp. Biol. Med., 1986, no. 9, pp. 339-342.

  79. Tarantul, V.Z., Makarova, I.V., Andreeva, L.E., et al., DNA of the Simian Adenovirus and Its Expression in Organs of the Progeny of Transgenic Mice, Mol. Genet., Mikrobiol. Virusol., 1986, no. 1, pp. 22-26.

  80. Ernst, L.K., Goldman, I.L., Semenova, V.A., et al., The Phenotypic Effects of the Bovine Growth Hormone Gene in Transgenic Rabbits, Dokl. Vses. Akad. S-kh. Nauk, 1990, no. 6, pp. 32-36.

  81. Ernst, L.K., Zakcharchenko, V.I., Suraeva, N.M., et al., Transgenic Rabbits with Antisense RNA Gene Targeted at Adenovirus H5, Theriogenology, 1991, vol. 35, no. 6, pp. 1257-1271.

    Google Scholar 

  82. Goldman, I.L., Babayants, A.A., Kuznetsov, V.P., et al., The Antiviral Activity in the Blood of Pigs Carrying the Human Fibroblast Interferon Transgene, Dokl. Ross. Akad. S-kh. Nauk, 1995, no. 6, pp. 28-31.

  83. Goldman, I.L., Bashkeev, E.D., Gogolevskii, P.A., et al., Progressive Biotechnology to Construct Transgenic Sheep, Dokl. Ross. Akad. S-kh. Nauk, 1992, nos. 9-10, pp. 25-30.

  84. Gogolevskii, P.A., Goldman, I.L., Bashkeev, E.D., et al., Cytological Aspects of the Technique Used to Produce Transgenic Sheep, Dokl. Ross. Akad. S-kh. Nauk, 1993, no. 5, pp. 23-26.

  85. Goldman, I.L., Zakharova, E.S., Kadulin, S.G., and Suraeva, N.M., Chymosine, a New Biotechnological Product, Biotechnologiya, 1996, no. 12, pp. 3-16.

  86. Pursel, V.G. and Wall, R.J., Effects of Transferred Ova per Recipient and Dual Use of Donors as Recipients on Production of Transgenic Swine, Theriogenology, 1996, vol. 46, pp. 201-209.

    Google Scholar 

  87. Kuhholzer, B., Muller, S., Prokofiev, M.I., et al., Laparoscopic Techniques for the Recovery and Transfer of Microinjected Goat Zygotes, Theriogenology, 1998, vol. 49, p. 245.

    Google Scholar 

  88. Gogolevskii, P.A., Goldman, I.L., Gusev, V.V., et al., Study of the Expression of the b-Galactosidase Gene in Transgenic Rabbit Early Embryos, Dokl. Vses. Akad. S-kh. Nauk, 1991, no. 10, pp. 38-42.

  89. Gagne, M., Pothier, F., and Sirard, M.A., Effect of Microinjection Time during Postfertilization S-Phase on Bovine Embryonic Development, Mol. Reprod. Dev., 1995, vol. 41, pp. 184-185.

    Google Scholar 

  90. Gogolevskii, P.A., Goldman, I.L., Zhadanov, A.B., et al., Analysis of the Possibility of Using Endonucleases to Increase the Frequency of Recombinant DNA Integration into the Animal Genome, Dokl. Vses. Akad. S-kh. Nauk, 1991, no. 12, pp. 24-26.

  91. Seo, B.B., Kim, C.H., Yamanouchi, K., et al., Co-Injection of Restriction Enzyme with Foreign DNA into the Pronucleus for Elevating Production Efficiencies of Transgenic Animals, Anim. Reprod. Sci., 2000, vol. 63, nos. 1–2, pp. 113-122.

    Google Scholar 

  92. Georgiev, G.P., Vasetskii, E.S., Razin, S.V., et al., RF Patent 2 049 820, 1995.

  93. Goldman, I.L., Ernst, L.K., Gogolevskii, P.A., et al., Study of the Expression of the Bovine Growth Hormone Gene in Transgenic Rabbits Carrying the MTI/BGHatt Construct Containing MAR, Dokl. Ross. Akad. S-kh. Nauk, 1993, no. 1, pp. 58-71.

  94. Goldman, I.L., Razin, S.V., Ernst, L.K., et al., Molecular Biological Aspects of the Problem of Position-Independent Expression of Foreign Genes in Cells of Transgenic Animals, Biotechnologiya, 1994, no. 2, pp. 3-8.

  95. Ernst, L.K., Goldman, I.L., Zinov'eva, N.A., et al., Construction of Transgenic Sheep Carrying the αS1-Casein/Chymosine Construct, Dokl. Akad. Nauk, 1995, vol. 345, no. 4, pp. 555-558.

    Google Scholar 

  96. Goldman, I.L., Bashkeev, E.D., Brem, G., et al., RF Patent 29 607, 1997.

  97. Youn, W.S., Lee, C.S., Goldman, I.L., et al., Studies on the Superovulation and Collection of Microinjectable Embryos in Korean Native Goats (Capra hircus aegagrus), Korean J. Anim. Reprod., 1997, vol. 21, no. 4, pp. 373-379.

    Google Scholar 

  98. Goldman, I.L., Ernst, L.K., Gogolevskii, P.A., et al., Theoretical Problems of Production of Transgenic Animals: Experiments with Rabbits, Sbornik nauchnykh trudov “Gennoinzhenernye sel'skokhozyaistvennye zhivot-nye” (Transgenic Farm Animals: Collection of Works), Moscow, 1995, issue 1, pp. 93-103.

  99. Dobrovolsky, V.N., Lagutin, O.V., Vinogradova, T.V., et al., Human γ-Interferon Expression in the Mammary Gland of Transgenic Mice, FEBS Lett., 1993, vol. 319, nos. 1–2, pp. 181-184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, I.L., Kadulin, S.G. & Razin, S.V. Transgenic Goats in the World Pharmaceutical Industry of the 21st Century. Russian Journal of Genetics 38, 1–14 (2002). https://doi.org/10.1023/A:1013785725040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013785725040

Keywords

Navigation