Skip to main content
Log in

Unit Tangent Sphere Bundles with Constant Scalar Curvature

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. J. Berndt, F. Tricerri and L. Vanhecke: Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995.

    Google Scholar 

  2. A. L. Besse: Manifolds all of whose geodesics are closed. Ergeb. Math. Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978.

    Google Scholar 

  3. A. L. Besse: Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

    Google Scholar 

  4. D. E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

    Google Scholar 

  5. D. E. Blair: When is the tangent sphere bundle locally symmetric? Geometry and Topology. World Scientific, Singapore, 1989, pp. 15–30.

    Google Scholar 

  6. D. E. Blair and T. Koufogiorgos: When is the tangent sphere bundle conformally flat? J. Geom. 49 (1994), 55–66.

    Google Scholar 

  7. E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian manifolds of conullity two. World Scientific, Singapore, 1996.

    Google Scholar 

  8. E. Boeckx and L. Vanhecke: Characteristic reflections on unit tangent sphere bundles. Houston J. Math. 23 (1997), 427–448.

    Google Scholar 

  9. E. Boeckx and L. Vanhecke: Curvature homogeneous unit tangent sphere bundles. Publ. Math. Debrecen 53 (1998), 389–413.

    Google Scholar 

  10. P. Bueken: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures ϱ 1 = ϱ 2ϱ 3. J. Math. Phys. 37 (1996), 4062–4075.

    Google Scholar 

  11. B.-Y. Chen and L. Vanhecke: Differential geometry of geodesic spheres. J. Reine Angew. Math. 325 (1981), 28–67.

    Google Scholar 

  12. P. Gilkey, A. Swann and L. Vanhecke: Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford 46 (1995), 299–320.

    Google Scholar 

  13. A. Gray: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280.

    Google Scholar 

  14. A. Gray and L. Vanhecke: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142 (1979), 157–198.

    Google Scholar 

  15. A. Gray and T. J. Willmore: Mean-value theorems for Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 343–364.

    Google Scholar 

  16. S. Ivanov and I. Petrova: Riemannian manifolds in which certain curvature operator has constant eigenvalues along each circle. Ann. Global Anal. Geom. 15 (1997), 157–171.

    Google Scholar 

  17. O. Kowalski: A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolin. 30 (1989), 85–88.

    Google Scholar 

  18. O. Kowalski: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ϱ 1 = ϱ 2ϱ 3. Nagoya Math. J. 132 (1993), 1–36.

    Google Scholar 

  19. O. Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying R(X, Y ) · R = 0. Czechoslovak Math. J. 46 (1996), 427–474.

    Google Scholar 

  20. J. W. Milnor: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293–329.

    Google Scholar 

  21. E. Musso and F. Tricerri: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. 150 (1988), 1–20.

    Google Scholar 

  22. K. Sekigawa and L. Vanhecke: Volume preserving geodesic symmetries on fourdimensional Kähler manifolds. Differential Geometry Peñiscola, 1985, Proceedings (A. M. Naveira, A. Ferrández and F. Mascaró, eds.). Lecture Notes in Math. 1209, Springer, pp. 275–290.

  23. I. M. Singer: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685–697.

    Google Scholar 

  24. I. M. Singer and J. A. Thorpe: The curvature of 4-dimensional Einstein spaces. Global Analysis. Papers in honor of K. Kodaira. Princeton University Press, Princeton, 1969, pp. 355–365.

    Google Scholar 

  25. Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying R(X, Y ) ·R = 0, I, Local version. J. Differential Geom. 17 (1982), 531–582.

    Google Scholar 

  26. H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. J. 27 (1975), 103–110.

    Google Scholar 

  27. A. Tomassini: Curvature homogeneous metrics on principal fibre bundles. Ann. Mat. Pura Appl. 172 (1997), 287–295.

    Google Scholar 

  28. A. L. Yampol'skii: The curvature of the Sasaki metric of tangent sphere bundles (Russian). Ukrain. Geom. Sb. 28 (1985), 132–145; English translation. J. Sov. Math. 48 (1990), 108–117.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boeckx, E., Vanhecke, L. Unit Tangent Sphere Bundles with Constant Scalar Curvature. Czechoslovak Mathematical Journal 51, 523–544 (2001). https://doi.org/10.1023/A:1013779805244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013779805244

Navigation