Skip to main content
Log in

Entropic Formulation of Statistical Mechanics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present an alternative formulation of Equilibrium Statistical Mechanics which follows the method based on the maximum statistical entropy principle in Information Theory combined with the use of Massieu–Planck functions. The different statistical ensembles are obtained by a suitable restriction of the whole set of available microstates. The main advantage is that all of the equations that relate the average values with derivatives of the partition function are formally identical in the different ensembles. Moreover, Einstein's fluctuation formula is also derived within the same framework. This provides a suitable starting point for the calculation of fluctuations of extensive and intensive variables in any statistical ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106:620-630 (1957).

    Google Scholar 

  2. W. T. Grandy, Foundations of Statistical Mechanics (Reidel Publishing Company, Dordrecht, Holland, 1987).

    Google Scholar 

  3. R. Balian, From Microphysics to Macrophysics (Springer-Verlag, Berlin, 1991), Vol. I.

    Google Scholar 

  4. C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27:379-423 (1948).

    Google Scholar 

  5. The expression in this form was explicitly written, for the first time, by Planck. See, S. G. Brush, The Kind of Motion We Call Heat (North-Holland, Amsterdam, 1976), Vol. 2.

    Google Scholar 

  6. R. K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1972), 1st ed. and (Butterworth-Heinemann, Oxford, 1996), 2nd ed.

    Google Scholar 

  7. K. Huang, Statistical Mechanics (John Wiley, New York, 1987), 2nd ed.

    Google Scholar 

  8. A. Münster, Classical Thermodynamics (Wiley-Interscience, London, 1970).

    Google Scholar 

  9. H. B. Callen, Thermodynamics (Wiley, New York, 1960).

    Google Scholar 

  10. D. A. McQuarrie, Statistical Mechanics (Harper&Row, New York, 1973).

    Google Scholar 

  11. L. E. Reichl, A Modern Course in Statistical Physics (Wiley, New York, 1998).

    Google Scholar 

  12. R. Kubo, Statistical Mechanics (Elsevier Science, Amsterdam, 1988).

    Google Scholar 

  13. A. Münster, Statistical Thermodynamics (Springer-Verlag, Berlin, 1969).

    Google Scholar 

  14. M. F. Massieu, Sur les fonctions des divers fluides, Comptes Rendus Acad. Sci. 69:858-862 (1869).

    Google Scholar 

  15. M. Planck, Treatise on Thermodynamics (Dover, New York, 1945), translation of the 7th german edn.

    Google Scholar 

  16. D. ter Haar and H. Wergeland, Elements of Thermodynamics (Addison-Wesley, Reading, Massachussets, 1966).

    Google Scholar 

  17. E. A. Guggenheim, Grand partition functions and so-called ''Thermodynamic Probability,'' J. Chem. Phys. 7:103-107 (1939).

    Google Scholar 

  18. A. Caticha, Maximum Entropy, Fluctuations and Priors, presented at MaxEnt 2000, the 20th International Workshop on Bayesian Inference and Maximum Entropy Methods (July 8-13, Gif-sur-Yvette, France), math-ph/0008017 (2000).

  19. A. Einstein, Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes, Ann. Physik 33:1275-1298 (1910); English translation in: The Collected Papers of Albert Einstein, Vol. 3 (Princeton University Press, New Jersey, 1993).

    Google Scholar 

  20. For a discussion on thermodynamic uncertainty relations see: J. Uffink and J. van Lith, Thermodynamic uncertainty relations, Found. Phys. 29:655-692 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planes, A., Vives, E. Entropic Formulation of Statistical Mechanics. Journal of Statistical Physics 106, 827–850 (2002). https://doi.org/10.1023/A:1013778810460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013778810460

Navigation