Skip to main content
Log in

Neurohormones, Cytokines and Programmed Cell Death in Heart Failure: A New Paradigm for the Remodeling Heart

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cleland JGF. For the Task Force on heart failure of the European Society of Cardiology. Guidelines for the diagnosis of heart failure. Eur Heart J 1995; 16: 741-751.

    Google Scholar 

  2. American College of Cardiology∖American Heart Association. Task Force report. Guidelines for the evaluation and management of heart failure. Circulation 1995; 92: 2764-2784.

    Google Scholar 

  3. The Digitalis Investigation Group. The effects of Digoxin on mortality and morbidity in patients with heart failure. N Eng J Med 1997; 336: 525-533.

    Google Scholar 

  4. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival and Ventricular Enlargement Trial. N Eng J Med 1992; 327: 669-533.

    Google Scholar 

  5. Packer M. Beta-adrenergic blockade in chronic heart failure: Principles, progress and practice. Prog Cardiovasc Dis 1998; 41: 39-52.

    Google Scholar 

  6. Lechat P, Packer M, Chalon S, et al. Clinical effects of betaadrenergic blockade in chronic heart failure. Circulation 1998; 98: 1181-1191.

    Google Scholar 

  7. Ptt B, Zannad F, Remme W, et al. The effect of spitonactone on morbidity and mortality in patients with severe cardiac heart failure. N Eng J Med 1999; 341: 709-717.

    Google Scholar 

  8. Hochman JS, Bulkley BH. Expansion of acute myocardial infarction: An experimental study. Circulation 1982; 65: 1446-1450.

    Google Scholar 

  9. Jeremy RW, Allman KC, Bautovich G, Harris PJ. Patterns of the left ventricle dilatation during the six months after myocardial infarction. J Am Coll Cardiol 1989; 13: 304-310.

    Google Scholar 

  10. Weber KT, Anversa P, Armostrong PW, et al. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 1992; 20: 3-16.

    Google Scholar 

  11. Weber KT, Pick R, Silver MA, et al. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 1990; 82: 1387-1401.

    Google Scholar 

  12. Jugdutt BI. Effect of captopril and enalapril on left ventricular geometry, function and collagen during healing after anterior and inferior myocardial infarction in a dog model. J Am Coll Cardiol 1995; 25: 1718-1725.

    Google Scholar 

  13. Weisman H, Busch DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after acute myocardial infarction: A study in the rat model. Am J Cardiol 1985; 5: 1355-1362.

    Google Scholar 

  14. Rumberger JA, Behrenbeck T, Breen JR, et al. Nonparallel changes in global left ventricular chamber volume and muscle mass during the first year after transmural myocardial infraction in humans. J Am Coll Cardiol 1993; 21: 673-682.

    Google Scholar 

  15. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 1991; 68: 7-16.

    Google Scholar 

  16. McKay RG, Pfeffer MA, Pasternak RC, et al. Left ventricular remodeling after myocardial infarction: A corollary to infarct expansion. Circulation 1986; 74: 693-702.

    Google Scholar 

  17. Hutchins GM, Bulkley BH. Expansion versus extension:Two different complications of acute myocardial infarction. Am J Cardiol 1978; 41: 27-32.

    Google Scholar 

  18. Weber KT. Direct extraction and estimation of collagenase(s) activity by zymograph in microquantities of rat myocardium and uterus. Clin Biochem 1993; 26: 191-198.

    Google Scholar 

  19. McKay RG, Pfeffer MA, Pasterk RC, et al. Left ventricular remodeling after myocardial infarction:Acorollary to infarct expansion. Circulation 1986; 74: 693-702.

    Google Scholar 

  20. Cohn JN, Ferari R, Sharpe N. Cadiac remodeling-Concepts and clinical implications:Aconsensus paper from an international forum on cardiac remodeling behalf of an international forum on cardiac remodeling. J Am Cardi 2000; 35: 569-582.

    Google Scholar 

  21. Eaton LW, Weiss JL, Bulkley BH, et al. Regional cardiac dilatation after acute myocardial infarction: Recognition by two dimensional echocardiography. N Eng J Med 1979; 300: 57-62.

    Google Scholar 

  22. Anderson KR, StJ Sutton MG, Lie JT. Histopatological types of cardiac fibrosis in myocardial disease. J Pathol 1979; 128: 79-85.

    Google Scholar 

  23. Maisch B. Vetricular remodeling. Cardiology 1996; 87: 2-10.

    Google Scholar 

  24. Francis GS, McDonald KM. Left ventricular hypertrophy: An initial response to myocardial injury. Am J Cardiol 1992; 69: 3-9G.

    Google Scholar 

  25. Meerson FZ, Javick HP. Isozyme pattern and activity of myocardial creative phosphokinase under heart adaptation to chronic overload. Basic Res Cardiol 1982; 77: 349-358.

    Google Scholar 

  26. Sabbah HN, Goldstein S. Ventricular remodeling: Consequences and therapy. Eur Heart J 1993; 14:(Suppl. C): 24-29.

    Google Scholar 

  27. Marino TA, Kent RL, Uboh CE, et al. Structural analysis of cat right ventricular pressure versus volume overload hypertrophy. Am J Physiol 1985; 249: 371-379.

    Google Scholar 

  28. Schneider MD, Roberts R, Parker TG. Modulation of cardiac genes by mechanical stress: The oncogene signalling hypothesis. Mol Biol Med 1991; 81: 167-183.

    Google Scholar 

  29. van Bilsen M, Chien KR. Growth and hypertrophy of the heart: Towards an understanding of cardiac-specific and inducible gene expression. Cardiovasc Res 1993; 27: 1140-1149.

    Google Scholar 

  30. Reiss K, Capasso JM, Huang HE, et al. ANG II receptors, c-myc and c-jun in myocytes after myocardial infarction and ventricular failure. Am J Physiol 1993; 264: 760-769.

    Google Scholar 

  31. Weber KT, Brilla CG. Structural basis for pathological left ventricular hypertrophy. Clin Cardiol 1993; 16: 1110-1114.

    Google Scholar 

  32. Cooper G. Cardiocyte adaptation to chronically altered load. Annu Physiol 1987; 49: 501-518.

    Google Scholar 

  33. Morgan HE, Gordon EE, Kira Y, et al. Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol 1987; 49 533-543.

    Google Scholar 

  34. ter Keurs HEDJ, Savage DD, Lester WM, Mcgee DL. New perspectives on left ventricular hypertrophy: Anatomy, physiology, and significance. Clin Cardiol 1989; 12: 36-49.

    Google Scholar 

  35. Frank JS, Langer GA. The myocardial interstitium: Its structure and its role in ionic exchange. J Cell Biol 1974; 60: 586-601.

    Google Scholar 

  36. Brilla CG, Maisch B, Weber KT. Myocardial collagen matrix remodeling in arterial hypertension. Eur Heart J 1992; 13: 24-32.

    Google Scholar 

  37. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Circulation 1990; 81: 1161-1172.

    Google Scholar 

  38. Scheling P, Ganten D, Speck G, et al. Effect of angiotens in II and antagonist saralasin on cell growth and renin in 3T3 and SV 373 cells. J Cell Physiol 1979; 98: 503-514.

    Google Scholar 

  39. Olivier JP, Bouchet VA. Prospects for cardioreparation. Am J Cardiol 1992; 70: 27-36C.

    Google Scholar 

  40. Hamawaki M, Coffman TM, Oliverio MI, et al. Cardiac hypertrophy in mice occurs in the absence of angiotensin receptors. Circulation 1986; 92: 145-152.

    Google Scholar 

  41. Weber KT, Brilla CG. Pathological hypertrophy and the cardiac interstitium: Fibrosis and the renin-angiotensinaldosterone system. Circulation 1991; 83: 1849-1865.

    Google Scholar 

  42. McCumber M, Ross C, Glaser B, et al. Endothelin:Visualization of mRNAs by in situ hybridization provides evidence for local action. Proc Natl Acad Sci USA 1989; 86: 7258-7259.

    Google Scholar 

  43. Zhang J, McDonald KM. Bioenergetic consequences of left ventricular remodeling. Circulation 1995; 92: 1011-1019.

    Google Scholar 

  44. Schneider MD, McLellan WR, Black FM, Parker TG. Growth factors, growth factor response elements and the cardiac phenotype. Basic Res Cardiol 1992; 87: 33-48.

    Google Scholar 

  45. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: Molecular studies of an adaptive physiologic response. FASEB J 1991; 5: 3037-3046.

    Google Scholar 

  46. Feldman MD, Copelas L, Gwathmey JK, et al. Deficient production of cyclic AMP: Pharmacologic evidence of an important cause of contractile dysfunction in patients with endstage heart failure. Circulation 1987; 75: 331-339.

    Google Scholar 

  47. Ceconi C, Condorelli E, Rodella A, Cornacchiari A, Ferrari R, Harris P. Effects of cardiac failure in rats on myocardial concentrations of noradrenaline and on atrial ANP: Bombesin-and neurotensin-like immunoreactivity. International Symposium: Physiology, Clinical aspects and treatment of coronary insufficiency, Torino, 3-6 June 1987; p.

  48. Bristow MR, Ginsburg R, Minobe W, et al. Decreased cathecolamines sensitivity and beta-adrenergic receptor density in failing human hearts. N Eng JMed 1982; 307: 205-211.

    Google Scholar 

  49. Daly Pa, Sole MJ. Myocardial cathecolamines and the pathophysiology of heart failure. Circulation 1990; 82: 35-43.

    Google Scholar 

  50. Simpson P, McGrath A, Savion S. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by cathecolamines. Circ Res 1982; 51: 787-801.

    Google Scholar 

  51. Starksen NF, Simson Pc, Bishopric N, et al. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA 1986; 83: 8348-8350.

    Google Scholar 

  52. Laks MM, Morday F, Swan HJC. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dos. Chest 1973; 64: 75-78.

    Google Scholar 

  53. Sen S, Tarazi RC. Regression of myocardial hypertrophy and influence of the adrenergic system. Am J Physiol 1983; 244: 97-101.

    Google Scholar 

  54. Mann DL, Kent RL, Parsons B, Cooper G. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992; 85: 790-804.

    Google Scholar 

  55. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is a alpha I adrenergic response. J Clin Invest 1983; 72: 732-738.

    Google Scholar 

  56. Cooper G, Kent RL, Uboth CE, et al. Hemodynamic versus adrenergic control of the cat right ventricular hypertrophy. J Clin Invest 1985; 75: 1403-1414.

    Google Scholar 

  57. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in congestive heart failure. N Eng J Med 1990; 323: 236-241.

    Google Scholar 

  58. McMurray J, Abdullh I, Dargie HJ, et al. Icreased concentration of tumor necrosis factor in “cachetic” patients with severe chronic heart failure. Br Heart J 1991; 66: 356-358.

    Google Scholar 

  59. Dutka DP, Elborn JS, Delamere F, et al. Tumor necrosis factor α in severe congestive heart failure. Br Heart J 1993; 70: 141-143.

    Google Scholar 

  60. Katz SD, Rao R, Berman JW, et al. Pathophysiological correlates of increased serum tumor necrosisi factor in patients with congestive heart failure: Relation to nitric oxide-dependent vasodilation in the forearm circulation. Circulation 1994; 90: 12-16.

    Google Scholar 

  61. Matsumori A, Yamada T, Suzuki H, et al. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 1994; 72: 561-566.

    Google Scholar 

  62. Wiedermann CJ, Bermpold H, Manfred H, et al. Increased levels of serum neopterin and decreased production of neutrophil superoxide anions in chronic heart failure with elevated levels of tumor necrosis factor-alpha. J Am Coll Cardiol 1993; 22: 1897-1901.

    Google Scholar 

  63. Smith SC, Allen PM. Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis. Circ res 1992; 22: 1897-1901.

    Google Scholar 

  64. Habib FM, Springall DR, Davies GJ, et al. Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996; 347: 1151-1153.

    Google Scholar 

  65. Arbustini E, Grasso M, Diegoli M, et al. Expression of tumor necrosis factor in human cardiac rejection: An immunohistochemical and immunoblotting study. Am J Pathol 1991; 139: 709-715.

    Google Scholar 

  66. Maury CPJ, Teppo AM. Circulating tumor necrosisi factor α (cachetin) in myocardial infarction. J Intern Med 1989; 225: 333-336.

    Google Scholar 

  67. Jansen JN, van Oeveren W, Gu YJ, et al. Endotoxin release and tumor necrosis factor formation during cardiopulmonary bypass. Ann Thorac Surg 1992; 54: 744-748.

    Google Scholar 

  68. Spiegelman BM, Hotamisligil GS. Through thick and thin: Wasting, obesity and TNF-α. Cell 1993; 73: 625.

    Google Scholar 

  69. Vendenabeele P, Declercq W, Beyart R, et al. Two tumor necrosis factor receptors: Structure and function. Trends Cell Biol 1995; 5: 392-399.

    Google Scholar 

  70. Yokoyama T, Vaca L, Rossen RD, et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993; 92: 2303-2312.

    Google Scholar 

  71. McTiernan CF, Lemster BH, Frye CS, Brooks S, Combes A, Feldman AM. Interleukin-1 beta inhibits phospholamban gene expression in cultured cardiomyocytes. Circulation Res 1997; 81(4): 493-503.

    Google Scholar 

  72. Gulik T, Chung MK, Piper SJ, et al. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 1989; 86: 6753-6757.

    Google Scholar 

  73. Li YY, McTiernen CF, Feldman AM. Proinflammatory cytokines regulate tissue inhibitors of the metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res. 1999; 42: 162-172.

    Google Scholar 

  74. Yokoyama T, Nakano M, Bednarczyk J, et al. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1996; 95: 1247-1252.

    Google Scholar 

  75. Schultze-Osthoff K, Kramer PH, Droge W, et al. Divergent signaling via APO-1/FAS and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J 1994; 13: 4587-4596.

    Google Scholar 

  76. Fiers W, Beyaert R, Boone E, et al. TNF-induced intracellular signalling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflam 1996; 47: 67-75.

    Google Scholar 

  77. Agnoletti L, Curello S, Bachetti T, et al. Serum from patients with severe heart failure downregulates eNOS and is proapoptotic. Role of tumor necrosis factor-alpha. Circulation 1999; 100: 1983-1991.

    Google Scholar 

  78. Sharov VG, Sabbah HN, Shimoyama H, et al. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic Neurohormones, Cytokines and Programmed Cell Death Am J Pathol 1996; 148: 141-149.

    Google Scholar 

  79. Evan G, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119-128.

    Google Scholar 

  80. Smeyne RJ, Vendrell M, Hayward M, et al. Continuous c-fos expression precedes programmed cell death in vivo. Nature 1993; 363: 166-169.

    Google Scholar 

  81. Collins MKL Lopez Rivas A. The control of apoptosis in mammalian cells. TIBS 1993; 18: 307-309.

    Google Scholar 

  82. Li Z, Bing OHL, Long X, et al. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rats. Am J Physicol 1997; 272(5, pt 2): H2313-2319.

    Google Scholar 

  83. Hitota H, Chen J, Betz UAK, et al. Loss of a gap 130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97: 189-198.

    Google Scholar 

  84. Anand IS, Liu D, Chung SS, et al. Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction. Circulation 1997; 96: 3974-3984.

    Google Scholar 

  85. Gottlieb RA, Burleson KO, Kloner RA, et al. Perperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994; 94: 1621-1628.

    Google Scholar 

  86. Wyllie AH, Kerr JFR, Currie AR. Cell death: The signifi-cance of apoptosis. Int Rev Cytol. 1980; 68: 251-306.

    Google Scholar 

  87. Engler LE, Gottlieb RA. Programmed cell death: Apoptosis and cardiovascular disease. Dialogues Cardiovasc Med 1998; 3: 67-81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valgimigli, M., Curello, S., Ceconi, C. et al. Neurohormones, Cytokines and Programmed Cell Death in Heart Failure: A New Paradigm for the Remodeling Heart. Cardiovasc Drugs Ther 15, 529–537 (2001). https://doi.org/10.1023/A:1013771805743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013771805743

Navigation