Skip to main content
Log in

The Two Dimensional Hubbard Model at Half-Filling. I. Convergent Contributions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove analyticity theorems in the coupling constant for the Hubbard model at half-filling. The model in a single renormalization group slice of index i is proved to be analytic in λ for |λ|≤c/i for some constant c, and the skeleton part of the model at temperature T (the sum of all graphs without two point insertions) is proved to be analytic in λ for |λ|≤c/|log T|2. These theorems are necessary steps towards proving that the Hubbard model at half-filling is not a Fermi liquid (in the mathematically precise sense of Salmhofer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Benfatto and G. Gallavotti, Perturbation theory of the Fermi surface in a quantum liquid. A general quasi particle formalism and one dimensional systems, J. Statist. Phys. 59:541 (1990).

    Google Scholar 

  2. J. Feldman and E. Trubowitz, Perturbation theory for many fermion systems, Helv. Phys. Acta 63:156 (1991).

    Google Scholar 

  3. J. Feldman and E. Trubowitz, The flow of an electron-phonon system to the superconducting state, Helv. Phys. Acta 64:213 (1991).

    Google Scholar 

  4. G. Benfatto, G. Gallavotti, A. Procacci, and B. Scoppola, Commun. Math. Phys. 160:93 (1994).

    Google Scholar 

  5. F. Bonetto and V. Mastropietro, Commun. Math. Phys. 172:57 (1995).

    Google Scholar 

  6. M. Disertori and V. Rivasseau, Interacting Fermi liquid in two dimensions at finite temperature, Part I: Convergent attributions, Comm. Math. Phys. 215:251, (2000).

    Google Scholar 

  7. M. Disertori and V. Rivasseau, Interacting Fermi liquid in two dimensions at finite temperature, Part II: Renormalization, Commun. Math. Phys. 215:291 (2000).

    Google Scholar 

  8. M. Salmhofer, Continuous renormalization for Fermions and Fermi liquid theory, Commun. Math. Phys. 194:249 (1998)

    Google Scholar 

  9. J. Feldman, H. Knörrer, D. Lehmann, and E. Trubowitz, Fermi liquids in two space time dimensions, in Constructive Physics, V. Rivasseau, ed., Springer Lectures Notes in Physics, Vol. 446 (1995).

  10. J. Feldman, M. Salmhofer, and E. Trubowitz, Perturbation theory around non-nested Fermi surfaces ii. Regularity of the moving fermi surface, rpa contributions, Comm. Pure. Appl. Math. 51:1133 (1998); Regularity of the moving fermi surface, the full selfenergy, to appear in Comm. Pure. Appl. Math.

    Google Scholar 

  11. M. Salmhofer, Improved power counting and fermi surface renormalization, Rev. Math. Phys. 10:553 (1998).

    Google Scholar 

  12. J. Feldman, J. Magnen, V. Rivasseau, and E. Trubowitz, An infinite volume expansion for many fermion Green's functions, Helv. Phys. Acta 65:679 (1992).

    Google Scholar 

  13. J. Magnen and V. Rivasseau, A single scale infinite volume expansion for three dimensional many fermion Green's functions, Math. Phys. Electron. J., Vol. 1 (1995).

  14. M. Disertori, J. Magnen, and V. Rivasseau, Interacting Fermi liquid in three dimensions at finite temperature: Part I: Convergent contributions, Ann. H. Poincaré 2 (2001).

  15. A. Abdesselam and V. Rivasseau, Explicit fermionic cluster expansion, Lett. Math. Phys. 44:77-88 (1998).

    Google Scholar 

  16. A. Abdesselam and V. Rivasseau, Trees, forests and jungles: a botanical garden for cluster expansions, in Constructive Physics, V. Rivasseau, ed., Lecture Notes in Physics, Vol. 446 (Springer Verlag, 1995).

  17. V. Rivasseau, From Perturbative to Constructive Renormalization (Princeton University Press, 1991).

  18. M. Disertori and V. Rivasseau, Continuous constructive ferionic renormalization, Ann. H. Poincaré 11 (2000)

    Google Scholar 

  19. M. Gevrey, Sur la nature analytique des solutions des équations aux dérivées partielles, (Ann. Scient. Ec. Norm. Sup., 3 série. t. 35, p. 129-190), in Oeuvres de Maurice Gevrey, pp. 243 (CNRS, 1970).

    Google Scholar 

  20. A. Lesniewski, Effective action for the Yukawa2 quantum field theory, Commun. Math. Phys. 108:437 (1987).

    Google Scholar 

  21. C. de Calan and V. Rivasseau, Local existence of the Borel transform in euclidean Φ 44 , Commun. Math. Phys. 82:69 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivasseau, V. The Two Dimensional Hubbard Model at Half-Filling. I. Convergent Contributions. Journal of Statistical Physics 106, 693–722 (2002). https://doi.org/10.1023/A:1013770608643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013770608643

Navigation