Skip to main content
Log in

Donor–Acceptor Mechanism of Complex Formation

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The gas-phase van der Waals complexes formed in the course of donor–acceptor interaction are shown to become coordination compounds only in the crystalline state. With close lengths of the covalent-ionic and coordination bonds, their energies differ by ∼100 kJ. This energy difference is due to the work spent to overcome van der Waals forces during the formation of complex ions from interacting molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bent, H.A., Chem. Rev., 1968, vol. 68, no. 5, p. 587.

    Google Scholar 

  2. Haaland, A., Angew. Chem. Int. Ed. Engl., 1989, vol. 28, no. 8, p. 982.

    Google Scholar 

  3. Leopold, K.R., Canagaratna, M., and Phillips, J.A., Acc. Chem. Res., 1997, vol. 30, no. 2, p. 57.

    Google Scholar 

  4. Yatsimirskii, K.B., Termokhimiya kompleksnykh soedinenii (Thermochemistry of Complex Compounds), Moscow: Akad. Nauk SSSR, 1951.

    Google Scholar 

  5. Schmid, R., Miah, A.M., and Sapunov, V.N., Phys. Chem. Chem. Phys., 2000, vol. 2, no. 1, p. 97.

    Google Scholar 

  6. Batsanov, S.S., Strukturnaya khimiya. Fakty i zavisimosti (Structural Chemistry, Facts and Dependences), Moscow: Mosk. Gos. Univ., 2000.

    Google Scholar 

  7. Barin, I., Thermochemical Data of Pure Substances, Weinheim: VCH, 1995.

    Google Scholar 

  8. Olovsson, I., Acta Crystallogr., 1965, vol. 18, no. 5, p. 879.

    Google Scholar 

  9. Tebbe, K.-F., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1989, vol. 45, no. 2, p. 180.

    Google Scholar 

  10. Mingos, D.M.P., Yau, J., Menzer, S., and Williams, D.J., J. Chem. Soc., Dalton Trans., 1995, no. 2, p. 319.

  11. Westman, S., Werner, P.E., Schuler, T., and Radlow, W., Acta Chem. Scand., 1981, vol. A35, no. 4, p. 467.

    Google Scholar 

  12. Essmann, R., J. Mol. Struct., 1995, vol. 356, p. 201.

    Google Scholar 

  13. Simon, M. and Meyer, G., Z. Kristallogr., 1996, vol. 211, no. 5, p. 327.

    Google Scholar 

  14. Schimek, G.L., Young, D.M., and Kolis, J.W., Eur. J. Solid State Inorg. Chem., 1997, vol. 34, no. 10, p. 1037.

    Google Scholar 

  15. Semenenko, K.N., Lobkovskii, E.B., Polyakova, V.B., et al., Koord. Khim., 1978, vol. 4, no. 11, p. 1649.

    Google Scholar 

  16. Roos, M. and Meyer, G., Z. Anorg. Allg. Chem., 1999, vol. 625, no. 7, p. 1129.

    Google Scholar 

  17. Plitzko, C. and Meyer, G., Z. Anorg. Allg. Chem., 1996, vol. 622, no. 10, p. 1646.

    Google Scholar 

  18. Plitzko, C., Strecker, M., and Meyer, G., Z. Anorg. Allg. Chem., 1997, vol. 623, no. 1, p. 79.

    Google Scholar 

  19. Essmann, R., Kreiner, G., Niemann, A., et al., Z. Anorg. Allg. Chem., 1996, vol. 622, no. 7, p. 1161.

    Google Scholar 

  20. Nordin, E., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1978, vol. 34, no. 7, p. 2285.

    Google Scholar 

  21. Fujihara, T., Fuyuhiro, A., Yamanari, K., and Kaizaki, S., Chem. Lett., 1990, no. 9, p. 1679.

  22. Kofod, P., Harris, P., and Larsen, S., Inorg. Chem., 1997, vol. 36, no. 11, p. 2258.

    Google Scholar 

  23. Figgs, B.N., Reynolds, Ph.A., and Sobolev, A.N., J. Chem. Soc., Dalton Trans., 1994, no. 9, p. 1429.

  24. Engelhardt, L., Reynolds, Ph.A., and Sobolev, A.N., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1995, vol. 51, no. 6, p. 1045.

    Google Scholar 

  25. Casalnuovo, A., Calabrese, J., and Milstein, D., Inorg. Chem., 1987, vol. 26, no. 7, p. 971.

    Google Scholar 

  26. Tanaka, M., Tsujikawa, I., Toriumi, K., and Ito, T., Acta Crystallogr., Sect. B: Struct. Sci., 1982, vol. 38, no. 11, p. 2793.

    Google Scholar 

  27. Arpalahti, J., Sillanpaä, R., and Mikola, M., J. Chem. Soc., Dalton Trans., 1994, no. 9, p. 1499.

  28. Garnier, E., Mouahid, A.El., and Cernak, J., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1994, vol. 50, no. 1, p. 36.

    Google Scholar 

  29. Holloway, C.E. and Melnik, M., Rev. Inorg. Chem., 1995, vol. 15, nos. 3-4, p. 147.

    Google Scholar 

  30. Senker, J., Jacobs, H., Müller, H., et al., Z. Anorg. Allg. Chem., 1999, vol. 625, no. 12, p. 2065.

    Google Scholar 

  31. Fröhling, B., Kreiner, G., and Jacobs, H., Z. Anorg. Allg. Chem., 1999, vol. 625, no. 2, p. 211.

    Google Scholar 

  32. Roos, M. and Meyer, G., Z. Anorg. Allg. Chem., 1999, vol. 625, no. 6, p. 1839.

    Google Scholar 

  33. Brese, N.E. and O'Keeffe, M., Struct. Bonding (Berlin), 1992, vol. 79, p. 307.

    Google Scholar 

  34. Holloway, C.E. and Melnik, M., Rev. Inorg. Chem., 1985, vol. 7, nos. 1-3, p. 75.

    Google Scholar 

  35. Holloway, C.E. and Melnik, M., Rev. Inorg. Chem., 1997, vol. 16, nos. 1-2, p. 101.

    Google Scholar 

  36. Orlovskii, V.P. and Tananaev, I.V., Zh. Neorg. Khim., 1969, vol. 14, no. 6, p. 1502.

    Google Scholar 

  37. Palkin, V.A., Kuzina, T.A., and Kuz'mina, N.N., Zh. Neorg. Khim., 1973, vol. 18, no. 3, p. 773.

    Google Scholar 

  38. Hackert, A. and Plies, V., Z. Anorg. Allg. Chem., 1998, vol. 624, no. 1, p. 74.

    Google Scholar 

  39. Kulikov, I.S., Termodinamika karbidov i nitridov: Spravochnik (The Thermodynamics of Carbides and Nitrides: A Handbook), Chelyabinsk: Metallurgiya, 1988.

    Google Scholar 

  40. Handbook of Chemistry and Physics, Lide, D.R., Ed., New York: CRC Press, 1995-1996.

    Google Scholar 

  41. Guillermet, A.F. and Fisk, K., J. Alloys Compd., 1994, vol. 203, no. 1, p. 77.

    Google Scholar 

  42. Nelson, D.D., Fraser, G.T., and Klemperer, W., Science, 1988, vol. 238, no. 4834, p. 16470.

    Google Scholar 

  43. Davey, J.B., Legon, A.C., and Waclawik, E.R., Phys. Chem. Chem. Phys., 2000, vol. 2, no. 8, p. 1659.

    Google Scholar 

  44. Phillips, J.A., Canagaratna, M., Goodfriend, H., et al., J. Am. Chem. Soc., 1995, vol. 117, no. 50, p. 12549.

    Google Scholar 

  45. Signorell, R., Palm, H., and Merkt, F., J. Chem. Phys., 1997, vol. 106, no. 16, p. 6523.

    Google Scholar 

  46. De Kruif, C.G., J. Chem. Phys., 1982, vol. 77, no. 12, p. 6247.

    Google Scholar 

  47. Marsh, S., LASL Shock Hugoniot Data, Berkeley: Univ. California Press, 1980.

    Google Scholar 

  48. Shimizu, H., Kamabuchi, K., Kume, T., and Sasaki, S., Phys. Rev. B: Condens. Matter, 1999, vol. 59, no. 18, p. 1727.

    Google Scholar 

  49. Vinet, P., Ferrante, F., Rose, J.H., and Smith, J.R., J. Geophys. Res., 1987, vol. 92, no. 9, p. 9319.

    Google Scholar 

  50. Schlosser, H., Ferrante, J., and Smith, J.R., Phys. Rev. B: Condens. Matter, 1991, vol. 44, no. 17, p. 9696.

    Google Scholar 

  51. Dvorak, M.A., Ford, R.S., Suenram, R.D., et al., J. Am. Chem. Soc., 1992, vol. 114, no. 1, p. 108.

    Google Scholar 

  52. Timoshkin, A.Y., Suvorov, A.V., Bettinger, H.F., and Schaefer, H.F., J. Am. Chem. Soc., 1999, vol. 121, no. 24, p. 5687.

    Google Scholar 

  53. Almenningen, A., Gundersen, G., Haugen, T., and Haaland, A., Acta Chem. Scand., 1972, vol. 26, no. 10, p. 3928.

    Google Scholar 

  54. Brain, P.T., Brown, H.E., Downs, A.J., et al., J. Chem. Soc., Dalton Trans., 1998, no. 21, p. 3685.

  55. Mulliken, R.S., J. Phys. Chem., 1952, vol. 56, no. 7, p. 801.

    Google Scholar 

  56. Clementi, E., J. Chem. Phys., 1967, vol. 46, no. 10, p. 3842.

    Google Scholar 

  57. Kurnig, I.J. and Schneider, S., Int. J. Quantum Chem., Quantum Biol. Symp., 1987, no. 14, p. 47.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S. Donor–Acceptor Mechanism of Complex Formation. Russian Journal of Coordination Chemistry 28, 1–5 (2002). https://doi.org/10.1023/A:1013769217577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013769217577

Keywords

Navigation