Skip to main content
Log in

The NANA Gene Regulates Division and Elongation of Stem Cells in Arabidopsis thaliana (L.) Heynh.

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The dominant nana (na) mutation mapped to the top arm of Arabidopsis thalianachromosome 1 blocks cell proliferation in apical meristem (AM) of the inflorescence at its early development and suppresses the subsequent elongation by internode cells. Thenamutation reduces the sensitivity of cells of the inflorescence to gibberellin (GA) and paclobutrazole (PBZ) and prevents dormant and immature seeds from restoring the germinating ability in response to exogenous GA. On the other hand, exogenous GA and PBZ affects the onset of flowering, hypocotyl length, and leaf color; i.e., thena mutant displays an alteration of only several, rather than all, GA-dependent processes. Based on the results obtained, the product of the NA gene was assumed to play a role in the negative regulation of GA signaling and to act later than the products of the known GAI and SPY genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Richards, D.E., King, K.E., Ait-Ali, T., and Harberd, N.P., How Gibberellin Regulates Plant Growth and Development: A Molecular Genetic Analysis of Gibberellin Signaling, Annu. Rev. Physiol. Plant. Mol. Biol., 2001, vol. 52, pp. 67-88.

    Google Scholar 

  2. Koornneef, M., Elgersma, A., Hanhart, C.J., et al., A Gibberellin-Insensitive Mutant of Arabidopsis thaliana, Physiol. Plant., 1985, vol. 65, pp. 33-39.

    Google Scholar 

  3. Fridborg, L., Kuusk, S., Moritz, T., and Sunberg, E., The Arabidopsis Dwarf Mutant shi Exhibits Reduced Gibberellin Responses Conferred by Overexpression of a New Putative Zinc-Finger Protein, Plant Cell, 1999, vol. 11, pp. 1019-1031.

    Google Scholar 

  4. Jacobsen, S.E. and Olszewski, N.E., Mutation at the SPINDLY Locus of Arabidopsis Alter Gibberellin Signal Transduction, Plant Cell, 1993, vol. 5, pp. 887-896.

    Google Scholar 

  5. Peng, J., Carol, P., Richards, D.E., et al., The Arabidop-sis GAI Gene Defines a Signaling Pathway That Negatively Regulates Gibberellin Response, Genes Dev., 1997, vol. 11, pp. 3194-3205.

    Google Scholar 

  6. Harberd, N.P., King, K.E., Carol, P., et al., Gibberellin: Inhibitor of an Inhibitor of...?, BioEssays, 1998, vol. 20, pp. 1001-1008.

    Google Scholar 

  7. Silverstone, A.L., Ciampaglio, C.N., and Sun, T., The Arabidopsis RGA Gene Encodes a Transcriptional Regulator Repressing the Gibberellin Signal Transduction Pathway, Plant Cell, 1998, vol. 10, pp. 155-169.

    Google Scholar 

  8. Silverstone, A.L., Mak, P.Y.A., Martinez, E.C., and Sun, T., The New RGA Locus Encodes a Negative Regulator of Gibberellin Response in Arabidopsis thaliana, Genetics, 1997, vol. 146, pp. 1087-1099.

    Google Scholar 

  9. Wilson, R.N. and Somerville, C.R., Phenotypic Suppression of the Gibberellin-Insensitive Mutant (gai) of Arabidopsis, Plant Physiol., 1995, vol. 108, pp. 495-502.

    Google Scholar 

  10. Peng, J., Richards, D.E., Moritz, T., et al., Extragenic Suppressors of the Arabidopsis gai Mutation Alter the Dose-Response Relationship of Diverse Gibberellin Response, Plant Physiol., 1999, vol. 119, pp. 1199-1207.

    Google Scholar 

  11. Jacobsen, S.E., Binkowski, K.A., and Olszewski, N.E., SPINDLY, a Tetratricopeptide Repeat Protein Involved in Gibberellin Signal Transduction in Arabidopsis, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 9292-9296.

    Google Scholar 

  12. Steber, C.M., Cooney, S.E., and McCourt, P., Isolation of the GA-Response Mutant sly1 as a Suppressor of ABI1-1 in Arabidopsis thaliana, Genetics, 1998, vol. 149, pp. 509-521.

    Google Scholar 

  13. Ezhova, T.A., Ondar, U.N., Soldatova, O.P., and Mamanova, L.B., Genetic and Physiological Analyses of Dwarf Mutants of Arabidopsis thaliana (L.) Heynh., Ontogenez (Moscow), 1997, vol. 28, no. 5, pp. 344-351.

    Google Scholar 

  14. Yanushkevitsch, S.I., Ispol'zovanie Arabidopsis v prakticheskikh zanyatiyakh po obshchei genetike (The Use of Arabidopsis in a Practical Course on General Genetics), Moscow: Mosk. Gos. Univ., 1985.

    Google Scholar 

  15. Serebrovsky, A.S., Geneticheskii analiz (Genetic Analysis), Moscow: Nauka, 1970, pp. 288-290.

    Google Scholar 

  16. Jones, R., Harberd, N., and Kamiya, Y., Gibberellins 2000, Trends Plant Sci., 2000, vol. 5, no. 8, pp. 320-321.

    Google Scholar 

  17. Ross, J.J., Murfet, I.C., and Reid, J.J., Gibberellin Mutants, Physiol. Plant., 1997, vol. 100, pp. 550-560.

    Google Scholar 

  18. Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., et al., The GRAS Gene Family in Arabidopsis: Sequence Characterization and Basic Expression Analysis of the SCARECROW-LIKE Genes, Plant J., 1999, vol. 18, no. 1, pp. 111-119.

    Google Scholar 

  19. Kende, H., van der Knaap, E., and Cho, H.-T., Deepwater Rice: A Model Plant to Study Stem Elongation, Plant Physiol., 1998, vol. 118, no. 4, pp. 1105-1110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezhova, T.A., Soldatova, O.P. & Sklyarova, O.A. The NANA Gene Regulates Division and Elongation of Stem Cells in Arabidopsis thaliana (L.) Heynh.. Russian Journal of Genetics 38, 50–57 (2002). https://doi.org/10.1023/A:1013763727765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013763727765

Keywords

Navigation