Skip to main content
Log in

Studies of Fe2(CO)9 Formation in the Thermolysis of Fe(CO)5 Using Ab Initio Calculations of Fe(CO)5 and Fe(CO)4

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations using the GAMESS program package in the atomic basis TZV (Fe: (14s, 11p, 6d)/[10s, 8p, 3d]; C, O: (11s, 6p)/[5s, 3p]) were performed with account taken of the correlation with the second-order Möller–Plesset (MP2) perturbation theory to predict a new conformer Fe(CO)4 (with D 4h symmetry). This conformer has a square planar configuration in the ground singlet electronic state and is a mild electrophile produced by dissociation of Fe(CO)5 along the axial Fe–C bond. The process of nucleation of iron nanoparticles Fe(CO)5 + Fe(CO)4 → Fe2(CO)9 is supposed to occur in two stages. The first stage is an orbital-controlled reaction which should be monitored as an increase in medium polarity and temperature. It should proceed with participation of only one of the stable conformers of the nucleophile Fe(CO)5, namely, a mild conformer with square-pyramidal structure (C 4v ) rather than a hard but energetically more advantageous conformer with trigonal–bipyramidal structure (D 3h ). The structure of a prereaction complex was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Nanoparticles of Metals in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  2. Syrkin, V.G., CVD-metod: Khimicheskoe parofaznoe osazhdenie (CVD-Methods: Chemical Vapor Deposition), Moscow: Nauka, 2000.

    Google Scholar 

  3. Pogorelova, S.P., Plavnik, G.M., and Tikhonov, A.P., Kolloidn. Zh., 1999, vol. 61, no. 1, p. 100.

    Google Scholar 

  4. Smith, T.W. and Wychick, D., J. Phys. Chem., 1980, vol. 84, no. 12, p. 1621.

    Google Scholar 

  5. Shuttleworth, D., J. Phys. Chem., 1980, vol. 84, no. 12, p. 1629.

    Google Scholar 

  6. Zhuravlev, N.D., Roldugin, V.I., and Tikhonov, A.P., Kolloidn. Zh., 1999, vol. 61, no. 3, p. 322.

    Google Scholar 

  7. Kan, S., J. Colloid Interface Sci., 1996, vol. 178, p. 673.

    Google Scholar 

  8. Baev, A.K., Gaidym, I.L., and Dem'yanchuk, V.V., Zh. Fiz. Khim., 1975, vol. 49, no. 10, p. 2575.

    Google Scholar 

  9. Syrkin, V.G., Karbonily metallov (Metal Carbonyls), Moscow: Khimiya, 1983.

    Google Scholar 

  10. Baev, A.K., Struktura i energetika karbonilov metallov (Structure and Energy of Metal Carbonyls), Minsk: Vysheishaya Shkola, 1986.

    Google Scholar 

  11. Minkin, V.I., Simkin, B.Ya., and Minyaev, R.M., Teoriya stroeniya molekul (Theory of Molecular Structure), Rostov-on-Don: Feniks, 1997.

    Google Scholar 

  12. Summerville, R.H. and Hoffmann, R., J. Am. Chem. Soc., 1979, vol. 101, no. 14, p. 3821.

    Google Scholar 

  13. Rosa, A. and Baerends, E.J., New J. Chem., 1991, vol. 15, no. 10/11, p. 815.

    Google Scholar 

  14. Reinhold, J., Elke, H., and Mealli, C., New J. Chem., 1994, vol. 18, no. 4, p. 465.

    Google Scholar 

  15. Jang, J.H., Lee, J.G., Lee, H., et al., J. Phys. Chem. A, 1998, vol. 102, no. 27, p. 5298.

    Google Scholar 

  16. Xie, Y., Schaefer, H.F., III, and King, R.B., J. Am. Chem. Soc., 2000, vol. 122, no. 36, p. 8746.

    Google Scholar 

  17. Smirnov, V.N., Kinet. Katal., 1993, vol. 34, no. 4, p. 591.

    Google Scholar 

  18. Mingos, D.M.P., Lyne, P.D., and Pidun, U., Pure Appl. Chem., 1995, vol. 67, no. 2, p. 265.

    Google Scholar 

  19. Fanfarillo, M., Downs, A.J., Greene, T.M., and Almond, M.J., Inorg. Chem., 1992, vol. 31, no. 13, p. 2973.

    Google Scholar 

  20. Daniel, C., Dedieu, B.A., Wiest, R., and Veillard, A., J. Phys. Chem., 1984, vol. 88, no. 21, p. 4805.

    Google Scholar 

  21. Saraev, V.V. and Shmidt, F.K., Koord. Khim., 1997, vol. 23, no. 1, p. 45.

    Google Scholar 

  22. Angeli, C., Berthier, G., Rolando, C., et al., J. Phys. Chem. A, 1997, vol. 101, no. 42, p. 7907.

    Google Scholar 

  23. Radius, U., Bickelhaupt, F.M., Ehlers, A.W., et al., Inorg. Chem., 1998, vol. 37, no. 5, p. 1080.

    Google Scholar 

  24. Fanfarillo, M., Cribb, H.E., Downs, A.J., et al., Inorg. Chem., 1992, vol. 31, no. 13, p. 2962.

    Google Scholar 

  25. Skorobogatov, G.A. and Dzevitskii, B.E., Zh. Obshch. Khim., 1995, vol. 65, no. 5, p. 741.

    Google Scholar 

  26. Li, J., Schreckenbach, G., and Ziegler, T., J. Am. Chem. Soc., 1995, vol. 117, no. 1, p. 486.

    Google Scholar 

  27. Barnes, L.A., Rosi, M., and Bauschlicher, C.W., Jr., J. Chem. Phys., 1991, vol. 94, no. 3, p. 2031.

    Google Scholar 

  28. Baerends, E.J. and Rosa, J., Coord. Chem. Rev., 1998, vol. 177, no. 1, p. 97.

    Google Scholar 

  29. Ehlers, A.W., Roiz-Morales, Y., Baerends, E.J., and Ziegler, T., Inorg. Chem., 1997, vol. 36, no. 22, p. 5031.

    Google Scholar 

  30. Ricca, A. and Bauschlicher, C.W., Jr., J. Phys. Chem., 1994, vol. 98, no. 49, p. 12899.

    Google Scholar 

  31. Elian, M. and Hoffmann, R., Inorg. Chem., 1975, vol. 14, no. 5, p. 1058.

    Google Scholar 

  32. Burdett, J.K., J. Chem. Soc., Faraday Trans. 2, 1974, vol. 70, p. 1599.

    Google Scholar 

  33. Poliakoff, M. and Weitz, E., Acc. Chem. Res., 1987, vol. 20, no. 11, p. 408.

    Google Scholar 

  34. Trevor, J.B., Grinter, R., and Thomson, A.J., J. Chem. Soc., Chem. Commun., 1977, no. 22, p. 841.

  35. Lyne, P.D., Mingos, D.M.P., Ziegler, T., and Downs, A.J., Inorg. Chem., 1993, vol. 32, no. 22, p. 4785.

    Google Scholar 

  36. Semenov, S.G., Apostolova, E.S., and Shevchenko, S.M., J. Mol. Struct., 1991, vol. 251, p. 389.

    Google Scholar 

  37. Pearson, R.G., J. Chem. Educ., 1999, vol. 76, no. 2, p. 267.

    Google Scholar 

  38. Petrukhin, O.M., Tsirel'son, V.G., and Porai-Koshits, M.A., Zh. Neorg. Khim., 1995, vol. 40, no. 6, p. 961.

    Google Scholar 

  39. Chermette, H., J. Comput. Chem., 1999, vol. 20, no. 1, p. 129.

    Google Scholar 

  40. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., et al., J. Comput. Chem., 1993, vol. 14, no. 11, p. 1347.

    Google Scholar 

  41. Wachters, A.J.H., J. Chem. Phys., 1970, vol. 52, no. 3, p. 1033.

    Google Scholar 

  42. Rappe, A.K., Smedley, T.A., and Goddard, W.A., III, J. Phys. Chem., 1981, vol. 85, no. 3, p. 2607.

    Google Scholar 

  43. Dunning, T.H., J. Chem. Phys., 1971, vol. 55, no. 2, p. 716.

    Google Scholar 

  44. De Proft, F., Martin, J.M.L., and Geerlings, P., Chem. Phys. Lett., 1996, vol. 250, nos. 3-4, p. 393.

    Google Scholar 

  45. Bachrach, S.M., Rev. Comput. Chem., 1994, vol. 5, p. 171.

    Google Scholar 

  46. Baker, J., Theor. Chim. Acta, 1985, vol. 68, no. 3, p. 221.

    Google Scholar 

  47. Knowles, P.J., Andrews, J.S., Amos, R.D., et al., Chem. Phys. Lett., 1991, vol. 186, nos. 2-3, p. 130.

    Google Scholar 

  48. Lauderdale, W.J., Stanton, J.F., Gauss, J., et al., Chem. Phys. Lett., 1991, vol. 187, nos. 1-2, p. 21.

    Google Scholar 

  49. Pavankumar, P.N.V., Satharamulu, P., Yao, S., et al., J. Comput. Chem., 1999, vol. 20, no. 3, p. 365.

    Google Scholar 

  50. Zhidomirov, G.M., Bagatur'yants, A.A., and Abronin, I.A., Prikladnaya kvantovaya khimiya. Raschety reaktsionnoi sposobnosti i mekhanizmov khimicheskikh reaktsii (Applied Quantum Chemistry. Computation of Reaction Capacity and Mechanisms of Chemical Reactions), Moscow: Khimiya, 1979, p. 110.

    Google Scholar 

  51. Dupuis, M., Chin, S., and Marquez, A., Relativistic and Electron Correlation Effects in Molecules, Malli, G., Ed., New York: Plenum, 1994.

    Google Scholar 

  52. Frisch, M.J., Head-Gordon, M., and Pople, J.A., Chem. Phys. Lett., 1990, vol. 166, no. 3, p. 275.

    Google Scholar 

  53. Bagatur'yants, A.A., Itogi Nauki Tekh., Ser. Kinet. Katal., 1985, vol. 14, p. 1.

    Google Scholar 

  54. Apostolova, E.S. and Semenov, S.G., Vestn. St. Petersb. Univ., Khim., 1993, no. 25, p. 39.

  55. Maruani, J., Khoudir, A., Kuleff, A., et al., Adv. Quantum Chem., 2001, vol. 39, p. 308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolova, E.S., Tikhonov, A.P. & Sendyurev, O.A. Studies of Fe2(CO)9 Formation in the Thermolysis of Fe(CO)5 Using Ab Initio Calculations of Fe(CO)5 and Fe(CO)4. Russian Journal of Coordination Chemistry 28, 38–45 (2002). https://doi.org/10.1023/A:1013763704373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013763704373

Keywords

Navigation