Skip to main content
Log in

On the Existence of Invariant Measure for Lagrangian Velocity in Compressible Environments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study transport of a passive tracer particle in a time dependent turbulent flow in the medium with positive molecular diffusivity. We show that there exists then a probability measure equivalent to the underlying physical probability, corresponding to the Eulerian velocity field, under which the particle Lagrangian velocity observations are stationary. As an application we derive the existence of the Stokes drift and the effective diffusivity—the characteristics of the long time behavior of the particle motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. B. Isichenko, Percolation, statistical topography and transport in random media, Rev. Mod. Phys. 64:961-1043 (1992).

    Google Scholar 

  2. M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for turbulent transport, Commun. Math. Phys. 131:381-429 (1990).

    Google Scholar 

  3. A. Fannjiang and T. Komorowski, The fractional Brownian motion limit for motions in turbulence, Ann. of Appl. Prob. 10:1100-1120 (2000).

    Google Scholar 

  4. A. Fannjiang and T. Komorowski, Fractional Brownian motions and enhanced diffusion in a unidirectional wave-like turbulence, J. Statist. Phys. 100:1071-1095 (2000).

    Google Scholar 

  5. A. Fannjiang, Anomalous diffusion in random flows, in Mathematics of Multiscale Materials, Vol. 99, K. M. Golden, G. R. Grimmett, R. D. James, G. W. Milton, and P. N. Sen, eds. (1998), pp. 81-89.

  6. G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Physica D 76(1-3):110-122 (1994).

    Google Scholar 

  7. S. Olla, Homogenization of Diffusion Processes in Random Fields (Manuscript of Centre de Mathématiques Appliquées, 1994).

  8. J. L. Lumley, The Mathematical Nature of the Problem of Relating Lagrangian and Eulerian Statistical Functions in Turbulence, Méchanique de la Turbulence. Coll. Int du CNRS a´ Marseille. Ed. du CNRS (Paris, 1962).

  9. S. C. Port and C. Stone, Random measures and their application to motion in an incompressible fluid, J. Appl. Prob. 13:499-506 (1976).

    Google Scholar 

  10. G. C. Papanicolaou and S. R. S. Varadhan, Boundary Value Problems With Rapidly Oscillating Random Coefficients, Vol. 27, J. Fritz and J. L. Lebowitz, eds. (Random Fields Coll. Math. Soc. Janos Bolyai, North-Holland, 1982), pp. 835-873.

    Google Scholar 

  11. S. M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys 40:73-145 (1985).

    Google Scholar 

  12. S. A. Molchanov, Lectures on Random Media, Ecole d'été de Probabilités de St. Flour XXII, Lecture Notes in Math., Vol. 1581 (Springer-Verlag, Berlin, 1994), pp. 242-411.

    Google Scholar 

  13. H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion, Comm. Math. Phys. 65:97-128 (1979).

    Google Scholar 

  14. T. Komorowski, Diffusion approximation for the advection of particles in a strongly turbulent random environment, Ann. of Prob. 24:346-376 (1996).

    Google Scholar 

  15. T. Komorowski and G. Papanicolaou, Motion in a Gaussian, incompressible flow, Annals of Appl. Prob. 17:229-264 (1997).

    Google Scholar 

  16. T. Komorowski and G. Krupa, The Law of Large Numbers for Ballistic, Multi-Dimensional Random Walks on Random Lattices with Correlated Sites. Preprint (2001).

  17. D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25:81-122 (1967).

    Google Scholar 

  18. A. Lasota and M. Mackey, Probabilistic Properties of Deterministic Systems (Cambridge University Press, 1985).

  19. A. V. Skorokhod, s-Algebras of events on probability spaces. Similarity and Factorization, Theory Prob. Appl. 36:63-73 (1990).

    Google Scholar 

  20. G. C. Papanicolaou and S. R. S. Varadhan, Boundary Value Problems With Rapidly Oscillating Random Coefficients, Vol. 27, J. Fritz and J. L. Lebowitz, eds. (Random Fields Coll. Math. Soc. Janos Bolyai, North-Holland, 1982), pp. 835-873.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komorowski, T., Krupa, G. On the Existence of Invariant Measure for Lagrangian Velocity in Compressible Environments. Journal of Statistical Physics 106, 635–651 (2002). https://doi.org/10.1023/A:1013762406825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013762406825

Navigation