Skip to main content
Log in

Chemical characterization of the lectin from Amaranthus leucocarpus syn. hypocondriacus by 2-D proteome analysis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In this work, we characterized chemically the N-acetyl-D-galactosamine specific lectin from Amaranthus leucocarpus syn hypocondriacus lectin (ALL). It is a dimeric glycoprotein composed by three isoforms with pl at 4.8, 4.9, and 5.2. Circular dichroism analysis indicated that the secondary structure of ALL contains 45% of β-sheet and 5% of α-helix. Amino acid sequence of the purified lectin and its isoforms was determined from peptides obtained after trypsin digestion by MALDI-TOF (Matrix assisted laser desorption ionization-time of flight). The tryptic peptides prepared from the purified lectin and the three isoforms showed different degrees (80 to 83%) of identity with the amino acid sequence belonging to a previously described high nutritional value protein from A. hypocondriacus not shown at the time to be a lectin. Furthermore, analysis of tryptic peptides obtained from ALL previously treated with peptide N-glycosidase, revealed a 93% identity with the aforementioned protein. Presence of N-glycosidically linked glycans of the oligomannosidic type and, in minor proportion, of the N-acetyllactosaminic type glycans was determined by affinity chromatography on immobilized Con A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharon N, Lis H, Legume lectins, a large family of homologous proteins, FASEB J 4, 3198–208 (1990).

    Google Scholar 

  2. Weiss I, Drickramer K, Structural basis of the lectin-carbohydrate recognition, Annu Rev Biochem 65, 441–73 (1996).

    Google Scholar 

  3. Van Damme EJ, Peumans WJ, Barre A, Rouge P, Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles, Crit Rev Biochem Mol Biol 33, 209–58 (1998).

    Google Scholar 

  4. Rinderle SJ, Goldstein IJ, Matta KL, Ratcliffe RM, Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T-(or cryptic T)-antigen, J Biol Chem 264, 16123–31 (1989).

    Google Scholar 

  5. Calderon de la Barca A, Vazquez-Moreno L, Amaranthus cruentus lectin: Purification, stability and some biochemical properties, J Food Biochem 12, 117–26 (1988).

    Google Scholar 

  6. Zenteno E, Ochoa JL, Isolation and characterization of Amaranthus leucocarpus lectin, Phytochemistry 27, 313–7 (1988).

    Google Scholar 

  7. Zenteno E, Lascurain R, Montaño LF, Vazquez L, Debray H, Montreuil J, Specificity of Amaranthus leucocarpus lectin, Glycoconjugate J 9, 204–8 (1992).

    Google Scholar 

  8. Zenteno E, Ochoa JL, Parra C, Montaño LF, Rayon I, Maldonado G, Ruiz B, Carvajal R, Mitogenic immunosuppressive and phagocytic activity of Machaerocerus eruca and Amaranthus leucocarpus lectin. In Lectins-biology, Biochemistry, Clinical Biochemistry, Vol. 4, edited by Boög-Hansen TC, Breborowicz J, (Walter de Gruyter, 1985), pp. 537–46.

  9. Boland CR, Chen YF, Rinderle SJ, Resau JH, Luk GD, Lynch HT, Goldstein IJ, Use of the lectin from Amaranthus caudatus as a histochemical probe of proliferating colonic epithelial cells, Cancer Res 51, 657–65 (1991).

    Google Scholar 

  10. Lascurain R, Chávez R, Gorocica P, Pérez A, Montaño LF, Zenteno E, Recognition of CD4+ mouse medullary thymocyte subpopulation by Amaranthus leucocarpus lectin, Immunology 83, 410–3 (1994).

    Google Scholar 

  11. Lascurain R, Porras F, Baáz R, Chávez R, Martínez S, Álvarez G, Zenteno E, Amaranthus leucocarpus lectin recognizes human naive T cell subpopulations, Immunol Invest 26, 579–87 (1997).

    Google Scholar 

  12. Guevara J, Espinosa B, Zenteno E, Vázquez L, Luna J, Perry G, Mena R, Altered glycosylation pattern of proteins in Alzheimer disease, J Neuropath Exp Neurol 57, 905–14 (1998).

    Google Scholar 

  13. Hernández P, Bacilio M, Porras F, Juárez S, Debray H, Zenteno E, Ortiz B, A comparative study on the purification of the Amaranthus leucocarpus syn. hypocondriacus lectin, Prep Biochem Biotechnol 29, 219–34 (1999).

    Google Scholar 

  14. Kuster B, Wheler SF, Hunter AP, Dweek RA, Harvey DJ, Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase highperformance liquid chromatography, Anal Biochem 250, 82–101 (1977).

    Google Scholar 

  15. Bradford MM, A rapid and sensitive method for quantitation of microgram quantities of proteins utilizing the principle of protein dye-binding, Anal Biochem 72, 248–54 (1976).

    Google Scholar 

  16. Zanetta JP, Timmerman P, Leroy Y, Gas–liquid chromatography of the heptafluorobutirate derivatives of O-methyl-glycosides on capillary columns: a method for the quantitative determination of monosaccharide composition of glycoproteins and glycolipids, Glycobiology 9, 255–66 (1999).

    Google Scholar 

  17. Catsimpoolas N, Micro isoelectric focusing in polyacrylamide gel columns, Anal Biochem 26, 480–4 (1968).

    Google Scholar 

  18. Laemmli UK, Favra M, Maturation of the head of bacteriophage T4. I. DNA packaging events, J Mol Biol 80, 575–99 (1973).

    Google Scholar 

  19. Hellman U, Wernstedt C, Gonez J, Heldin CH, Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing, Anal Biochem 224, 451–5 (1995).

    Google Scholar 

  20. Geourjon C, Deleage G, SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments, Comput Appl Biosci 11, 681–4 (1995).

    Google Scholar 

  21. Garnier J, Gibrat JF, Robson B, GOR secondary structure prediction method version IV. In Methods in Enzymology, Vol. 266, edited by Doolittle RF, (1996), pp. 540–53.

  22. Jones DT, Protein secondary structure prediction based on positionspecific scoring matrices, J Mol Biol 292, 195–202 (1999).

    Google Scholar 

  23. Transue TR, Smith AK, Mo H, Goldstein IJ, Saper, MA, Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin, Nat Struct Biol 4, 779–83 (1997).

    Google Scholar 

  24. Raina A, Datta A, Molecular cloning of a gene encoding a seedspecific protein with nutritionally balanced amino acid composition from Amaranthus, Proc Natl Acad Sci USA 89, 11774–8 (1992).

    Google Scholar 

  25. Calderon de la Barca A, Ochoa JL, Valencia ME, Effect of the extraction of a hemagglutinin on the nutritive value of Amaranthus leucocarpus seeds, J Food Sci 50, 1700–8 (1985).

    Google Scholar 

  26. Calderon de la Barca A, Zenteno E, Ochoa JL, Valencia M, Carvajal R, The removal of Amaranthus leucocarpus lectin does not affect the nutritional value of the seed meal. In Lectins-Biology, Biochemistry, Clinical Biochemistry, Vol. 4, edited by Bög-Hansen TC, Breborowics J, (Walter de Gruyter, 1985), pp. 531–6.

  27. Rini M, Lectin structure, Annu Rev Biomol Struc 24, 551–77 (1995).

    Google Scholar 

  28. Sharma V, Surolia A, Analysis of carbohydrate recognition by legume lectin: Size of the combining site loops and their primary specificity, J Mol Biol 267, 433–45 (1997).

    Google Scholar 

  29. Rinderle SJ, Goldstein IJ, Remsen EE, Physicochemical properties of Amaranthin, the lectin from Amaranthus caudatus seeds, Biochemistry 29, 10555–61 (1990).

    Google Scholar 

  30. Debray H, Decout D, Strecker G, Spik G, Montreuil J, Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins, Eur J Biochem 117, 41–55 (1981).

    Google Scholar 

  31. Kuhn P, Guan C, Cui T, Tarentino AL, Plummer TH Jr, Van Roey P, Active site and oligosaccharide recognition residues of peptide-N-(N-acetyl-D-glucosaminyl)asparagine amidase F, J Biol Chem 270, 29493–7 (1995).

    Google Scholar 

  32. Perez Campos E, Sierra C, Lascurain R, Espinoza B, Bouquelet S, Debray H, Zenteno E, The erythroagglutinin from Phaseolus coccineus Var. Alubia: chemical characterization, sugar specificity and effect on coagulation factors, J Agric Food Chem 45, 3747–52 (1997).

    Google Scholar 

  33. Capon C, Piller F, Wieruszeski JM, Leroy I, Fournet B, The glycomannosidic structure from jacalin, Artocarpus integrifolia lectin, Carbohydr Res 199, 121–7 (1990).

    Google Scholar 

  34. Fournet B, Leroy Y, Wieruszeski JM, Montreuil J, Poretz RD, Goldberg R, Primary structure of an N-glycosidic carbohydrate unit derived from Sophora japonica lectin, Eur J Biochem 166, 321–4 (1987).

    Google Scholar 

  35. Ortega M, Sanchez C, Chacon E, Estrada R, Masso F, Montaño LF, Rendon J, Zenteno E, Purification and characterization of a lectin from Erythrina americana by affinity chromatography, Plant Science 72, 133–40 (1990).

    Google Scholar 

  36. Debray H, Wieruszeski JM, Strecker G, Franz H, Structural analysis of the carbohydrate chains isolated from mistletoe (Viscum album) lectin I, Carbohydr Res 236, 135–43 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, P., Debray, H., Jaekel, H. et al. Chemical characterization of the lectin from Amaranthus leucocarpus syn. hypocondriacus by 2-D proteome analysis. Glycoconj J 18, 321–329 (2001). https://doi.org/10.1023/A:1013760915738

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013760915738

Navigation