Skip to main content
Log in

Geomagnetic Control of the Spectrum of Traveling Ionospheric Disturbances Based on Data from a Global GPS Network

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

An attempt is made to verify the hypothesis on the role of geomagnetic disturbances as a factor determining the intensity of traveling ionospheric disturbances (TIDs). To improve the statistical validity of the data, we used the method of global spatial averaging of disturbance spectra of the total electron content (TEC), which is based on the new GLOBDET technology. To characterize the TID intensity quantitatively, we propose using a new global index of the degree of disturbance, which is equal to the mean value of the r.m.s. TEC variations within the chosen range of TID periods (20-60 min in the present case). The analysis was made for a set of 100 to 300 GPS stations, and for 10 days with different levels of geomagnetic activity (the Dst index varied from -13 to -321 nT and the Kp index, from 3 to 9). It was found that as the magnetic disturbance increases, the total intensity of TIDs also increases monotonically; however, the latter correlates not with the absolute value of Dst but with the value of the time derivative of Dst (the maximum correlation coefficient reaches -0.94). The delay about 2 h in the TID response is consistent with the viewpoint that TIDs are generated in auroral regions and propagate toward the equator with a velocity of about 300-400 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. D. Hunsucker, Rev. Geophys., 20, No. 2, 293 (1982).

    Google Scholar 

  2. K. Hocke and K. Schlegel, Ann. Geophys., 14, No. 5, 917 (1996).

    Google Scholar 

  3. C. M. Ho, B. A. Iijima, X. P. Lindqwister, A. J. Mannucci, L. Sparks, M. J. Reyes, and B. D. Wilson, J. Geophys. Res. A, 103, No. 11, 26409 (1998).

    Google Scholar 

  4. E. L. Afraimovich, E. A. Kosogorov, L. A. Leonovich, K. S. Palamarchouk, N. P. Perevalova, O. M. Pirog, J. Atmos. Solar-Terr. Phys., 62, No. 7, 553 (2000).

    Google Scholar 

  5. M. Ferster, U. Schwarz, M. H. Fatkullin, N. A. Gasilov, and M. Markwardt, Geomagn. Aéeron., 34, No. 4, 160 (1994).

    Google Scholar 

  6. M. H. Fatkullin, E. V. Zarutskaya, and V. A. Fatkullina, Kosm. Issled., 34, No. 1, 15 (1996).

    Google Scholar 

  7. J. A. Waldock and T. B. Jones, J. Atmos. Terr. Phys., 49, No. 2, 105 (1987).

    Google Scholar 

  8. T. Ogawa, K. Igarashi, K. Aikyo, and H. Maeno, J. Geomagn. Geoelectr., 39, 709 (1987).

    Google Scholar 

  9. F. Bertin, J. Testud, and L. Kersley, Planet. Space Sci., 23, 493 (1975).

    Google Scholar 

  10. W. L. Oliver, Y. Otsuka, M. Sato, T. Takami, and S. Fukao, J. Geophys. Res., 102, 14449 (1997).

    Google Scholar 

  11. V. I. Drobzhev, V. M. Krasnov, and N. M. Salihov, J. Atmos. Terr. Phys., 41, No. 9, 1011 (1979).

    Google Scholar 

  12. Yu. G. Litvinov and A. F. Yakovets, Geomagn. Aéeron., 3, No. 3, 486 (1983).

    Google Scholar 

  13. M. Z. Kaliev, I. M. Krasnikov, Yu. G. Litvinov, B. D. Chakenov, and A. F. Yakovets, Geomagn. Aéeron., 28, No. 2, 316 (1988).

    Google Scholar 

  14. S. V. Fridman, Planet. Space Sci., 38, 961 (1990).

    Google Scholar 

  15. A. F. Yakovets, M. Z. Kaliev, and V. V. Vodyannikov, J. Atmos. Solar-Terr. Phys., 61, No. 8, 629 (1999).

    Google Scholar 

  16. J. A. Klobuchar, Radio Sci., 32, No. 5, 1943 (1997).

    Google Scholar 

  17. E. L. Afraimovich, Radio Sci., 35, No. 6, 1417 (2000).

    Google Scholar 

  18. K. Davies, Space Sci. Rev., 25, 357 (1980).

    Google Scholar 

  19. E. L. Afraimovich, N. P. Minko, and S. V. Fridman, J. Atmos. Terr. Phys., 56, No. 11, 1431 (1994).

    Google Scholar 

  20. J. V. Evans, J. M. Holt, and R. H. Wand, Radio Sci., 18, 435 (1983).

    Google Scholar 

  21. B. Hofmann-Wellenhof, H. Lichtenegger, amd J. Collins, Global Positioning System: Theory and Practice, Springer—Verlag, Wien, New York (1992), p. 327.

    Google Scholar 

  22. E. L. Afraimovich, K. S. Palamartchouk, and N. P. Perevalova, J. Atmos. Sol.-Terr. Phys., 60, No. 12, 1205 (1998).

    Google Scholar 

  23. W. Gurtner, RUNEX: The Receiver Independent Exchange Format Version 2, http://igscb.jpl.nasa.gov/igscb/data/format/rinex2.txt (1993).

  24. J. A. Klobuchar, IEEE Trans. Aerospace Electron. Syst., 23, No. 3, 325 (1986).

    Google Scholar 

  25. T. A. Gailit, V. D. Gusev, L. M. Erukhimov, and P. I. Shpiro, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 26, No. 7, 795 (1983).

    Google Scholar 

  26. R. C. Livingston, C. L. Rino, J. P. McClure, and W. B. Hanson, J. Geophys. Res., 86, 2421 (1981).

    Google Scholar 

  27. M. C. Kelley, K. D. Baker, J. C. Ulwick, C. L. Rino, and M. J. Baron, Radio Sci., 15, No. 3, 491 (1980).

    Google Scholar 

  28. G. L. Gdalevich, V. D. Ozerov, I. S. Vsekhsvyatskaya, L. N. Novikova, and T. N. Sobolev, Geomagn. Aéeron., 20, No. 5, 809 (1980). 773

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afraimovich, E.L., Kosogorov, E.A., Lesyuta, O.S. et al. Geomagnetic Control of the Spectrum of Traveling Ionospheric Disturbances Based on Data from a Global GPS Network. Radiophysics and Quantum Electronics 44, 763–773 (2001). https://doi.org/10.1023/A:1013760814426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013760814426

Keywords

Navigation