Skip to main content
Log in

Effect of Molecular Mass on the Melting Temperature, Enthalpy and Entropy of Hydroxy-Terminated PEO

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper studies the effect of molecular mass on the melting temperature, enthalpy and entropy of hydroxy-terminated poly(ethylene oxide) (PEO). It aims to correlate the thermal behaviour of PEO polymers and their variation of molecular mass (MW). Samples ranging from 1500 to 200,000 isothermally treated at 373 K during 10 min, were investigated using DSC and Hot Stage Microscopy (HSM). On the basis of DSC and HSM results, melting temperatures were determined, and melting enthalpies and entropies were calculated. Considering the melting temperatures, it was found that the maximum or critical value of MW was found around 4000, and then these remain almost constant. This behaviour was interpreted assuming that lower MW fractions (MW<4000) crystallize in the form of extended chains and higher MW fractions (MW>4000), as folded chains. The melting enthalpies showed a scattering effect at least up to MW 35,000. It was difficult to obtain any relationship between melting enthalpies in J g−1 and MW. These variations seem to be of statistical nature. Corrected enthalpy data on a molar basis (kJ mol−1) exhibited a linear relationship with MW. Considering the solid—liquid equilibrium, the melting entropies (in kJ mol−1) were calculated. These values were more negative as compared with molar enthalpy increases. It was explained because the changes in melting temperatures are much smaller than those observed in the enthalpy values. Linear relationship between enthalpies andentropies as a function of MW was deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Arlie, P. A. Spegt and A. E. Skoulios, Makromol. Chem., 99 (1966) 160.

    Google Scholar 

  2. H. Tadokoro, Macromol. Rev., 1 (1966) 119.

    Google Scholar 

  3. D. R. Beech, C. Booth, D. V. Dogson and I. H. Hillier, J. Polym. Sci.: Part A-2, 10 (1972) 1555.

    Google Scholar 

  4. F. E. Bailey and J. V. Koleske, Polyethylene oxide, Academic Press, New York, USA 1976.

    Google Scholar 

  5. Yu. K. Godovsky, G. L. Slonimsky and N. M. Garbar, J. Polym. Sci. Part C, 38 (1972) 1.

    Google Scholar 

  6. M. Mihailov, E. Nedkov and I. Goshev, J. Macromol. Sci. Phys., B15 (1978) 313.

  7. R.C. Allen and L. Mandelkern, J. Polym. Sci. Polym. Phys. Ed., 20 (1982) 1465.

    Google Scholar 

  8. L. Mandelkern, Crystallization of Polymers, McGraw.Hill, New York 1964.

    Google Scholar 

  9. A. J. Kovacs, A. Gonthier and C. Straupe, J. Polym. Sci., 50 (1975) 283.

    Google Scholar 

  10. C. P. Buckley and A. J. Kovacs, Coll. Polym. Sci., 695 (1976) 695.

    Google Scholar 

  11. R. Yang, X. R. Yang, D. F. Evans, W. A. Hendricks and J. Baker, J. Phys. Chem., 94 (1990) 6123.

    Google Scholar 

  12. W. L. Chiou and S. Riegelman, J. Pharm. Sci., 60 (1971) 1281.

    Google Scholar 

  13. J. L. Ford, A. F. Stewart and J. L. Dubois, Int. J. Pharm., 26 (1986) 11.

    Google Scholar 

  14. H. Hommel, A. P. Legrand, P. Tougne, H. Balard and E. Papirer, Macromol., 17 (1984) 1578.

    Google Scholar 

  15. M. L. Green, T. Kramer, M. Parish, J. Fox, R. Lalanandham, W. Rhine, S. Barclay, P. Calvert and H. K. Bowen, Advances in Ceramics Vol. 21, Ceramic Powder Science and Technology, The American Ceramic Society, Westerville, USA 1987.

    Google Scholar 

  16. M. L. Green, W. E. Rhine, P. Calvert and H. K. Bowen, J. Mater. Sci. Lett., 12 (1993) 1425.

    Google Scholar 

  17. Yu. S. Lipatov and C. M. Sergeeva, Adsorption of Polymers, J. Wiley and Sons, New York, USA 1974.

    Google Scholar 

  18. J. Zheng, J. S. Reed and S. K. Verma, Am. Ceram. Soc. Bull., 73 (1994) 61.

    Google Scholar 

  19. M. J. Fraser, D. R. Cooper and C. Booth, Polymer, 18 (1977) 852.

    Google Scholar 

  20. D. Q. M. Craig and J. M. Newton, Int. J. Pharm., 74 (1991) 33.

    Google Scholar 

  21. Y. Kambe, Polymer, 21 (1980) 352.

    Google Scholar 

  22. A. M. Afifj-Effat and J. N. Hay, J. Chem. Soc. Faraday Trans., 2 (1972) 656.

    Google Scholar 

  23. E. Alfthan and A. de Ruvo, Polymer, 16 (1975) 692.

    Google Scholar 

  24. M. Costagliola, R. Greco and A. Martuscelli, Polymer, 19 (1978) 860.

    Google Scholar 

  25. J. L. Ford, Pharm. Acta Helv., 59 (1984) 280.

    Google Scholar 

  26. S. M. Chatham, S. T. P. Pharm., 3 (1987) 575.

    Google Scholar 

  27. P. J. Flory, J. Chem. Phys., 17 (1949) 223.

    Google Scholar 

  28. J. N. Hay, M. Sabir and R. L. T. Steven, Polymer, 10 (1969) 187.

    Google Scholar 

  29. D. R. Beech and C. Booth, Polymer Lett., 8 (1970) 731.

    Google Scholar 

  30. R. H. Beaumont, B. Clegg, G. Gee, J. B. M. Herbert, D. J. Marks, R. C. Roberts and D. Sims, Polymer, 7 (1966) 401.

    Google Scholar 

  31. P. J. Flory and A. Vrij, J. Am. Chem. Soc., 85 (1963) 3548.

    Google Scholar 

  32. M. D. Tuladhar, J. E. Carless and M. P. Summers, J. Pharm. Pharmacol., 35 (1983) 208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Sánchez-Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Soto, P.J., Ginés, J.M., Arias, M.J. et al. Effect of Molecular Mass on the Melting Temperature, Enthalpy and Entropy of Hydroxy-Terminated PEO. Journal of Thermal Analysis and Calorimetry 67, 189–197 (2002). https://doi.org/10.1023/A:1013758518721

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013758518721

Navigation