Skip to main content
Log in

Finite Element Solution of the Fundamental Equations of Semiconductor Devices II

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In part I of the paper (see Zlamal [13]) finite element solutions of the nonstationary semiconductor equations were constructed. Two fully discrete schemes were proposed. One was nonlinear, the other partly linear. In this part of the paper we justify the nonlinear scheme. We consider the case of basic boundary conditions and of constant mobilities and prove that the scheme is unconditionally stable. Further, we show that the approximate solution, extended to the whole time interval as a piecewise linear function, converges in a strong norm to the weak solution of the semiconductor equations. These results represent an extended and corrected version of results announced without proof in Zlamal [14].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bergh, J. Löfström: Interpolation Spaces. Springer Verlag, Berlin-Heidelberg-New York, 1976.

    Google Scholar 

  2. J. Céa: Optimization. Dunod, Paris, 1971.

    Google Scholar 

  3. P.G. Ciarlet: The Finite Element Method for EllipticProblems. North-Holland, Amsterdam-New York-Oxford, 1978.

    Google Scholar 

  4. J. F. Ciavaldini: Analyse numérique d'un probl'eme de Stefan 'a deux phases par une méthode d'eléments finis. SIAM J. Numer. Anal. 12 (1975), 464–487.

    Google Scholar 

  5. D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    Google Scholar 

  6. V. Giraud, P. A. Raviart: Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1979.

    Google Scholar 

  7. G. Grisvard: Behaviour of the solutions of an ellipticb oundary value problem in a polygonal or polyhedral domain. In: Numerical Solution of Partial Differential Equations-III (B. Hubbard, ed.). Academic Press, New York-San Francisco-London, 1978, pp. 207–274.

    Google Scholar 

  8. A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague, 1977.

    Google Scholar 

  9. J. L. Lions: Quelques Méthodes de Résolution des Probl'emes aux Limites Non Linéaires. Dunod Gauthier-Villars, Paris, 1969.

    Google Scholar 

  10. J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques. Academia, Prague, 1967.

    Google Scholar 

  11. R. Rannacher, R. Scott: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982), 437–445.

    Google Scholar 

  12. P. A. Raviart: The use of numerical integration in finite element methods for solving parabolic equations. In: Topics in Numerical Analysis (J. J. H. Miller, ed.). Academic Press, London-New York, 1973, pp. 233–264.

    Google Scholar 

  13. M. Zlámal: Finite element solution of the fundamental equations of semiconductor devices I. Math. Comp. 46 (1986), 27–43.

    Google Scholar 

  14. M. Zlámal: Finite element solution of the fundamental equations of semiconductor devices. In: Numerical Approximation of Partial Differential Equations (E. L. Ortiz, ed.). North-Holland, Amsterdam-New York-Oxford-Tokyo, 1987, pp. 121–128.

    Google Scholar 

  15. M. Zlámal: Curved elements in the finite element method I. SIAM J. Numer. Anal. 10 (1973), 229–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlamal, M., Zenisek, A. Finite Element Solution of the Fundamental Equations of Semiconductor Devices II. Applications of Mathematics 46, 251–294 (2001). https://doi.org/10.1023/A:1013748108936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013748108936

Navigation