Skip to main content
Log in

Electron Transport Through Composite Monolayers

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Well-organized thiol monolayers on electrode surfaces are prepared using the Langmuir–Blodgett and self-assembly methods. Planned modification of the molecules building the monolayer allow the electron tunneling efficiency across the monolayer to be controlled. The barrier properties of the monolayers are probed by electrochemical methods. The extent of blocking for all systems under study indicates that contribution of the electroactive molecules that find direct access to the electrode surface can be neglected. These observations permit us to use the monolayers for the determination of the kinetic parameters of Fe(CN)3– 6 and IrCl2– 6 ion reduction. Such monolayers are employed for the studies of long-range electron transport. We show that insertion of amide bonds in appropriate positions of the alkyl chains of all molecules building the monolayer makes it possible to create a lateral hydrogen-bond network linking the internal amide groups in the monolayer and contributing to the electronic coupling between the redox probe and the electrode. The relation between the location of the amide moiety in the molecule and its importance for the electron tunneling efficiency through the intervening organic medium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kuznetsov, A.M., Charge Transfer in Chemistry, Physics, and Biology, Reading: Gordon and Beach, 1995.

    Google Scholar 

  2. Onuchcic, J.N. and Beratan, D.N., Protein Electron Transfer, Bendall, D.S., Ed., Oxford: BIOS Scientific, 1996.

    Google Scholar 

  3. Advances in Chemical Physics, Jortner, J. and Bixon, M., Eds., New York: Wiley, 1999, vol. 106, parts 1 and 2.

    Google Scholar 

  4. An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self–Assembly, Ulman, A., Ed., New York: Academic, 1991.

  5. Bell, C.M., Yang, H.C., and Mallouk, T.M., Adv. Chem. Ser., 1995, vol. 245, p. 221.

    Google Scholar 

  6. Molecular Electronics, Jortner, J. and Ratner, M., Eds., Osney Mead: Blackwell Science, 1997, p. 255.

    Google Scholar 

  7. Mann, B. and Kuhn, H., J. Appl. Phys., 1971, vol. 42, p. 4398.

    Google Scholar 

  8. Kuhn, H., J. Photochem., 1972, vol. 10, p. 11.

    Google Scholar 

  9. Polymeropoulos, E.E., Mobius, D., and Kuhn, H., J. Chem. Phys., 1978, vol. 68, p. 3918.

    Google Scholar 

  10. Polymeropoulos, E.E., Mobius, D., and Kuhn, H., Thin Solid Films, 1980, vol. 68, p. 173.

    Google Scholar 

  11. Haran, A., Waldeck, D.H., Naaman, R., et al., Science, 1994, vol. 263, p. 948.

    Google Scholar 

  12. Cheng, J., Saghi–Szabo, G., Tossel, J.A., and Miller, C.J., J. Am. Chem. Soc., 1996, vol. 118, p. 680.

    Google Scholar 

  13. Sachs, S.B., Dudek, S.P., Hsung, R.P., et al., J. Am. Chem. Soc., 1997, vol. 119, p. 10563.

    Google Scholar 

  14. Slowinski, K., Chamberlain, R.V., Bilewicz, R., and Majda, M., J. Am. Chem. Soc., 1996, vol. 118, p. 4709.

    Google Scholar 

  15. Slowinski, K., Chamberlain, R.V., Miller, C.J.K., and Majda, M., J. Am. Chem. Soc., 1997, vol. 119, p. 11910.

    Google Scholar 

  16. Chidsey, C.E.D., Science, 1991, vol. 251, p. 919.

    Google Scholar 

  17. Chidsey, C.E.D., Bertozzi, C.R., Putvinski, T.M., and Mujsce, A.M., J. Am. Chem. Soc., 1990, vol. 112, p. 4301.

    Google Scholar 

  18. Miller, C.J., Physical Electrochemistry: Principles, Methods, and Applications, Rubinstein, I., Ed., New York: Marcel Dekker, 1995, p. 27.

    Google Scholar 

  19. Finklea, H.O., Electroanalytical Chemistry, Bard, A.J. and Rubinstein, I., Eds., New York: Marcel Dekker, 1996, p. 109.

    Google Scholar 

  20. Zawisza, I., Bilewicz, R., Luboch, E., and Biernat, J.F., J. Electroanal. Chem., 1999, vol. 471, p. 156.

    Google Scholar 

  21. Zawisza, I., Bilewicz, R., Luboch, E., and Biernat, J.F., J. Chem. Soc., Dalton Trans., 2000, vol. 4, p. 499.

    Google Scholar 

  22. Sek, S. and Bilewicz, R., J. Inclusion Phenom., 1999, vol. 35, p. 55.

    Google Scholar 

  23. Sek, S., Misicka, A., and Bilewicz, R., J. Phys. Chem. B, 2000, vol. 104, p. 5399.

    Google Scholar 

  24. Sek, S. and Bilewicz, R., J. Electroanal. Chem. (in press).

  25. Blodgett, K. and Langmuir, I., Phys. Rev., 1937, vol. 51, p. 964.

    Google Scholar 

  26. Blodgett, K., J. Am. Chem. Soc., 1935, vol. 57, p. 1007.

    Google Scholar 

  27. Langmuir, I. and Schaefer, V.J., J. Am. Chem. Soc., 1938, vol. 60, p. 1351.

    Google Scholar 

  28. Bigelow, W.C., Pickett, D.L., and Zisman, W.A., J. Colloid Interface Sci., 1946, vol. 1, p. 513.

    Google Scholar 

  29. Sagiv, J., Isr. J. Chem., 1979, vol. 18, p. 339.

    Google Scholar 

  30. Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc., 1983, vol. 105, p. 4481.

    Google Scholar 

  31. Porter, M.D., Bright, T.B., Allara, D.L., and Chidsey, C.E.D., J. Am. Chem. Soc., 1987, vol. 109, p. 3559.

    Google Scholar 

  32. Ulman, A., Chem. Rev., 1996, vol. 96, p. 1533.

    Google Scholar 

  33. Daifuku, H., Aoki, K., Tokuda, K., and Matsuda, H., J. Electroanal. Chem., 1982, vol. 140, p. 179.

    Google Scholar 

  34. Roberts, G.G., Langmuir–Blodgett Monolayers, Roberts, G.G., Ed., New York: Plenum, 1990, p. 316.

    Google Scholar 

  35. Swart, R.M., Langmuir–Blodgett Films, Roberts, G.G., Ed., New York: Plenum, 1990, p. 273.

    Google Scholar 

  36. Bilewicz, R. and Majda, M., Langmuir, 1991, vol. 7, p. 2794

    Google Scholar 

  37. Bilewicz, R. and Majda, M., J. Am. Chem. Soc., 1991, vol. 113, p. 5464.

    Google Scholar 

  38. Bilewicz, R., Sawaguchi, T., Chamberlain, R.V. II, and Majda, M., Langmuir, 1995, vol. 11, p. 2256.

    Google Scholar 

  39. Slowinski, K., Bilewicz, R., and Kublik, Z., Electrochem. Commun., 1999, vol. 1, p. 437.

    Google Scholar 

  40. Tao, Y.–T., Pandian, K., and Lee, W.–Ch., J. Am. Chem. Soc., 2000, vol. 122, p. 7072.

    Google Scholar 

  41. Lee, M.T., Hsuch, C.C., Freund, C.C., and Ferguson, M.S., Langmuir, 1998, vol. 14, p. 6419.

    Google Scholar 

  42. Creager, S.E. and Rowe, G.K., Anal. Chim. Acta, 1991, vol. 246, p. 233.

    Google Scholar 

  43. Tender, L., Carter, M.T., and Murray, R.W., Anal. Chem., 1994, vol. 66, p. 3173.

    Google Scholar 

  44. Weber, K. and Creager, S.E., Anal. Chem., 1994, vol. 66, p. 3164.

    Google Scholar 

  45. Rowe, G.K. and Creager, S.E., J. Phys. Chem., 1994, vol. 98, p. 5500.

    Google Scholar 

  46. Richardson, J.N., Peck, S.R., Curtin, L.S., et al., J. Phys. Chem., 1995, vol. 99, p. 766.

    Google Scholar 

  47. Carter, M.T., Rowe, G.K., Richardson, J.N., et al., J. Am. Chem. Soc., 1995, vol. 117, p. 2896.

    Google Scholar 

  48. Smalley, J.F., Feldberg, S.W., Chidsey, C.E.D., et al., J. Phys. Chem., 1995, vol. 99, p. 13141.

    Google Scholar 

  49. Creager, S., Yu, C.J., Bamdad, C., et al., J. Am. Chem. Soc., 1999, vol. 121, p. 1059.

    Google Scholar 

  50. Tam–Chang, S.–W., Biebuyck, H.A., Whitesides, G.M., et al., Langmuir, 1995, vol. 11, p. 4371.

    Google Scholar 

  51. Clegg, R.S. and Hutchison, J.E., Langmuir, 1996, vol. 12, p. 5239.

    Google Scholar 

  52. Clegg, R.S., Reed, S.M., and Hutchison, J.E., J. Am. Chem. Soc., 1998, vol. 120, p. 2486.

    Google Scholar 

  53. Clegg, R.S. and Hutchison, J.E., J. Am. Chem. Soc., 1999, vol. 121, p. 5319.

    Google Scholar 

  54. Clegg, R.S., Reed, S.M., Smith, R.K., et al., Langmuir, 1999, vol. 15, p. 8876.

    Google Scholar 

  55. Porter, M.D., Bright, T.B., Allara, D., and Chidsey, C.E.D., J. Am. Chem. Soc., 1987, vol. 109, p. 3559.

    Google Scholar 

  56. Becka, A.M. and Miller, C.J., J. Phys. Chem., 1992, vol. 96, p. 2657.

    Google Scholar 

  57. Becka, A.M. and Miller, C.J., J. Phys. Chem., 1993, vol. 97, p. 6233.

    Google Scholar 

  58. Marcus, R.A. and Sutin, N., Biochim. Biophys. Acta, 1985, vol. 811, p. 265.

    Google Scholar 

  59. Liang, C. and Newton, M.D., J. Phys. Chem., 1993, vol. 97, p. 3199.

    Google Scholar 

  60. Finklea, H.O., Liu, L., Ravenscroft, M.S., and Punturi, S., J. Phys. Chem., 1996, vol. 100, p. 18852.

    Google Scholar 

  61. Marcus, R.A., J. Phys. Chem., 1963, vol. 67, p. 853.

    Google Scholar 

  62. Marcus, R.A., J. Chem. Phys., 1965, vol. 43, p. 679.

    Google Scholar 

  63. Finklea, H.O. and Hanshew, D.D., J. Am. Chem. Soc., 1992, vol. 114, p. 3173.

    Google Scholar 

  64. Weber, K.S. and Creager, S.E., J. Electroanal. Chem., 1998, vol. 458, p. 17.

    Google Scholar 

  65. Liu, Y.–P. and Newton, M.D., J. Phys. Chem., 1994, vol. 98, p. 7162.

    Google Scholar 

  66. Ravenscroft, M.S. and Finklea, H.O., J. Phys. Chem., 1994, vol. 98, p. 3843.

    Google Scholar 

  67. Schneider, J., Messerschmidt, C., Schulz, A., et al., Langmuir, 2000, vol. 16, p. 8575.

    Google Scholar 

  68. Thalladi, V.R., Boese, R., and Weiss, H–C., Angew. Chem. Int. Ed. Engl., 2000, vol. 39, p. 921.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilewicz, R., Sek, S. & Zawisza, I. Electron Transport Through Composite Monolayers. Russian Journal of Electrochemistry 38, 29–38 (2002). https://doi.org/10.1023/A:1013730210328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013730210328

Keywords

Navigation