Skip to main content
Log in

Properties of Some Overlapping Self-Similar and Some Self-Affine Measures

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We generalize theorems of Peres and Solomyak about the abso- lute continuity resp. singularity of Bernoulli convolutions ([19], [16], [17]) to a broader class of self-similar measures on the real line. Using the dimension the- ory of ergodic measures (see [11] and [2]) we find a formula for the dimension of certain self-affine measures in terms of the dimension of the above mentioned self- similar measures. Combining these results we show the identity of Hausdorff and box-counting dimension of a special class of self-affine sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J. P. Schreiber, Pisot and Salem Numbers, Birkhäuser Verlag (Basel, 1992).

    Google Scholar 

  2. L. Barreira, Ya. Pesin and J. Schmeling, Dimension of hyperbolic measures — a proof of the Eckmann-Ruelle conjecture, WIAS-Preprint 245 (1996); announcement in ERA-AMS 2/1 (1996).

  3. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer Verlag (Berlin, 1976).

    Google Scholar 

  4. P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math., 61 (1939), 974–976.

    Google Scholar 

  5. P. Erdős, On the smoothness properties of Bernoulli convolutions, Amer. J. Math., 62 (1940), 180–186.

    Google Scholar 

  6. K. Falconer, Fractal Geometry — Mathematical Foundations and Applications, Wiley (New York, 1990).

    Google Scholar 

  7. K. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Phil. Soc., 103 (1988), 339–350.

    Google Scholar 

  8. H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, Mathematical Systems Theory, 1 (1967), 1–49.

    Google Scholar 

  9. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 271–280.

    Google Scholar 

  10. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1995).

  11. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms; part I and II, Ann. Math., 122 (1985), 509–574.

    Google Scholar 

  12. P. Mattila, Geometry of Sets and Measures in Euclidean spaces, Cambridge University Press (1995).

  13. J. Neunhäuserer, A new class of counterexamples to the variational principle for Hausdorff dimension, Schwerpunktprogramm der deutschen Forschungsgemeinschaft: DANSE, Preprint 25/98 (1998).

  14. J. Neunhäuserer, Properties of some affine dynamical systems, Dissertation im Fach Mathematik an der Freien Universität Berlin (1999).

  15. Ya. Pesin, Dimension Theory in Dynamical Systems — Contemporary Views an Applications, University of Chicago Press (Chicago and London, 1997).

    Google Scholar 

  16. Y. Peres and B. Solomyak, Absolutely continuous Bernoulli convolutions — a simple proof, Math. Research Letters, 3 (1996), 231–239.

    Google Scholar 

  17. Y. Peres and B. Solomyak, Self-similar measures and intersection of Cantor sets, Trans. Amer. Math. Soc, 350 (1998), 4065–4087.

    Google Scholar 

  18. M. Pollicott and H. Weiss, The dimension of self-affine limit sets in the plane, J. Stat. Phys., 77 (1994), 841–860.

    Google Scholar 

  19. B. Solomyak, On the random series ∑±λi (an Erdős problem), Ann. Math., 142 (1995).

  20. B. Solomyak, Measures and dimensions for some fractal families, Proc. Cambridge Phil. Soc., 124 (1998), 531–546.

    Google Scholar 

  21. J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities, Ergod. Th. Dyn. Sys., 18 (1998), 1257–1282.

    Google Scholar 

  22. J. Schmeling and S. Troubetzkoy, Scaling properties of hyperbolic measures, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft: DANSE, Preprint 50/98.

  23. L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. Dyn. Sys., 2 (1982), 109–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neunhauserer, J. Properties of Some Overlapping Self-Similar and Some Self-Affine Measures. Acta Mathematica Hungarica 92, 143–161 (2001). https://doi.org/10.1023/A:1013716430425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013716430425

Keywords

Navigation