Plant Molecular Biology

, Volume 48, Issue 1–2, pp 155–171 | Cite as

Metabolomics – the link between genotypes and phenotypes

  • Oliver Fiehn

Abstract

Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes. In parallel to the terms `transcriptome' and `proteome', the set of metabolites synthesized by a biological system constitute its `metabolome'. Yet, unlike other functional genomics approaches, the unbiased simultaneous identification and quantification of plant metabolomes has been largely neglected. Until recently, most analyses were restricted to profiling selected classes of compounds, or to fingerprinting metabolic changes without sufficient analytical resolution to determine metabolite levels and identities individually. As a prerequisite for metabolomic analysis, careful consideration of the methods employed for tissue extraction, sample preparation, data acquisition, and data mining must be taken. In this review, the differences among metabolite target analysis, metabolite profiling, and metabolic fingerprinting are clarified, and terms are defined. Current approaches are examined, and potential applications are summarized with a special emphasis on data mining and mathematical modelling of metabolism.

functional genomics mass spectrometry metabolism metabolite profiling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.F. 1974. Determination of amino acid profiles in biological samples by gas chromatography. J. Chromatogr. 95: 189–212.Google Scholar
  2. Adams, M.A., Chen, Z.L., Landman, P. and Colmer, D. 1999. Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal. Biochem. 266: 77–84.Google Scholar
  3. Albert, R., Jeong, H. and Barabási, A.-L. 2000. Error and attack tolerance of complex networks. Nature 406: 378–381.Google Scholar
  4. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  5. Arkin, A., Shen, P. and Ross, J. 1997. A test case of correlation metric construction of a reaction pathway from measurements. Science 277: 1275–1279.Google Scholar
  6. ap Rees, T. and Hill, S.A. 1994. Metabolic control analysis of plant metabolism. Plant Cell Envir. 17: 587–599.Google Scholar
  7. Beaudry, F., Le Blanc, J.C.Y., Coutu, M., Ramier, I., Moreau, J.P. and Brown N.K. 1999. Metabolite profiling study of propranolol in rat using LC/MS/MS analysis. Biomed. Chromatogr. 13: 363–369.Google Scholar
  8. Becker, M.Y. and Rojas, I. 2001. A graph layout algorithm for drawing metabolic pathways. Bioinformatics 17: 461–467.Google Scholar
  9. Benthin, B., Danz, H. and Hamburger, M. 1999. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 837: 211–219.Google Scholar
  10. Bersini, H. and Calenbuhr, V. 1997. Frustrated chaos in biological networks. J. Theor. Biol. 188: 187–200.Google Scholar
  11. Beuerle, T. and Schwab, W. 1999. Metabolic profile of linoleic acid stored in apples: formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid. Lipids 34: 375–380.Google Scholar
  12. Bittner, M., Meltzer, P. and Trent, J. 1999. Data analysis and integration: of steps and arrows. Nature Genet. 22: 213–215.Google Scholar
  13. Blanch, G.P., Caja, M.M., del Castillo, M.L.R., Santa-Mariá, G. and Herraiz, M. 1999. Fractionation of plant extracts by supercritical fluid extraction and direct introduction in capillary gas chromatography using a programmable temperature vaporizer. J. Chromatogr. Sci. 37: 407–410.Google Scholar
  14. Bouchereau, A., Guénot, P. and Larher, F. 2000. Analysis of amines in plant materials. J. Chromatogr. B 747: 49–67.Google Scholar
  15. Brazma, A. and Vilo, J. 2000. Gene expression data analysis. FEBS Lett. 480: 17–24.Google Scholar
  16. Bücher, T. and Rüssmann, W. 1963. Gleichgewicht und Ungleichgewicht im System der Glykolyse. Angew. Chem. 75: 881–948.Google Scholar
  17. Butte, A.J. and Kohane, I.S. 2000. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5: 427–439.Google Scholar
  18. Castioni, P., Christen, P. and Veuthey J.L. 1995. Supercritical fluid extraction of compounds from plant origin. Analusis 23: 95–106.Google Scholar
  19. Christensen, B. and Nielsen, J. 1999. Metabolic network analysis: a powerful tool in metabolic engineering. In: T. Scheper (Ed.) Advances in Biochemical Engineering and Biotechnology, Springer-Verlag, Berlin, pp. 210–231.Google Scholar
  20. Christensen, B. and Nielsen, J. 2000. Metabolic network analysis of Penicillium chysogenum using 13C-labelled glucose. Biotechnol. Bioeng. 68: 652–659.Google Scholar
  21. Cornish-Bowden, A. and Cárdenas, M.L. 2000. From genome to cellular phenotype: a role for metabolic flux analysis? Nature Biotechnol. 18: 267–268.Google Scholar
  22. Cornish-Bowden, A. and Eisenthal, R. 2000. Computer simulations as a tool for studying metabolism and drug design. In: A.J. Cornish-Bowden and M.L. Cárdenas (Eds.) Technological and Medical Implications of Metabolic Control Analysis, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 165–172.Google Scholar
  23. Cornish-Bowden, A. and Hofmeyr, J.-H.S. 1994. Determination of control coefficients in intact metabolic systems. Biochem. J. 298: 367–375.Google Scholar
  24. Dauner, M. and Sauer, U. 2000. GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Progr. 16: 642–649.Google Scholar
  25. de Jongh, D.C., Radford, T., Hribar, J.D., Hanessian, S., Bieber, M., Dawson, G. and Sweeley, C.C. 1969. Analysis of trimethylsilyl derivatives of carbohydrates by gas chromatography and mass spectrometry. J. Am. Chem. Soc. 91: 1728–1740.Google Scholar
  26. Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradett, A. and Raymond, P. 1995. Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C-or 14C-labeled glucose. J. Biol. Chem. 22: 13147–13159.Google Scholar
  27. Edwards, J.S. and Palsson, B.O. 2000. The Escherichia coli MG 1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97: 5528–5533.Google Scholar
  28. Edwards, J.S., Ibarra, R.U. and Palsson, B.O. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19: 125–130.Google Scholar
  29. Eisen, M.B., Spellmann, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis & display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.Google Scholar
  30. Farré, E.M., Tiessen, A., Roessner, U., Geigenberger, P., Trethewey, R.N. and Willmitzer, L. 2001. Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids and sugar alcohols in potato tubers using a non-aqueous fractionation method. Plant Physiol., in press.Google Scholar
  31. Fell, D.A. 1997. Understanding the control of metabolism. Snell (ed.) Portland Press, London. Portland Press Frontiers in metabolism 2: 301 pp.Google Scholar
  32. Fell, D.A., Wagner, A. 2000. The small world of metabolism. Nature Biotechnol. 18: 1121–1122.Google Scholar
  33. Fiehn, O., Kloska, K. and Altmann, T. 2001. Integrated studies on plant biology using multiparallel techniques. Curr. Opin. Biotechnol. 12: 82–86.Google Scholar
  34. Fiehn, O., Kopka, J., Trethewey, R.N. and Willmitzer, L. 2000a. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72: 3573–3580.Google Scholar
  35. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N. and Willmitzer, L. 2000b. Metabolite profiling for plant functional genomics. Nature Biotechnol. 18: 1157–1161.Google Scholar
  36. Fraser, P.D., Pinto, M.E.S., Holloway, D.E. and Bramley, P.M. 2000. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24: 551–558.Google Scholar
  37. Gámiz-Gracia, L. and de Castro, M.D.L. 2000. Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta 51: 1179–1185.Google Scholar
  38. Gavaghan, C.L., Holmes, E., Lenz, E., Wilson, I.D., Nicholson, J.K.. 2000. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 484: 169–174.Google Scholar
  39. Gerhardt, R. and Heldt, H.W. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542–547.Google Scholar
  40. Giddings, G., Allison, G., Brooks, D. and Carter, A 2000. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnol. 18: 1151–1155.Google Scholar
  41. Giersch, C. 1995. Determining elasticities from multiple measurements of flux rates and metabolite concentrations: application of the multiple modulation method to a reconstituted pathway. Eur. J. Biochem. 227: 194–201.Google Scholar
  42. Giersch, C. 2000. Mathematical modelling of metabolism. Curr. Opin. Plant Biol. 2: 249–253.Google Scholar
  43. Gilbert, R.J., Goodacre, R., Woodward, A.M. and Kell, D.B. 1997. Genetic programming: a novel method for the quantitative analysis of pyrolysis mass spectral data. Anal. Chem. 69: 4381–4389.Google Scholar
  44. Gilbert, R.J., Rowland, J.J. and Kell, D.B. 2000. Genomic computing: explanatory modelling for functional genomics. In: D. Whitley, D. Goldberg and E. CantÚ-Paz (Eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufman, San Francisco, pp. 551–557.Google Scholar
  45. Gombert, A.K. and Nielsen, J. 1999. Mathematical modelling of metabolism. Curr. Opin. Biotechnol. 11: 180–186.Google Scholar
  46. Gonzalez, B., Francois, J. and Renaud, M. 1997. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13: 1347–1356.Google Scholar
  47. Goodacre, R., Shann, B., Gilbert, R.J., Timmings, E.M., McGovern, A.C., Alsberg, B.K., Kell, D.B. and Logan NA. 2000. Detection of the dipicolinic acid biomarker in Bacillus spores using Curiepoint pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal. Chem. 72: 119–127.Google Scholar
  48. Goryanin, I., Hodgman, T.C. and Selkov, E. 1999. Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15: 749–758.Google Scholar
  49. Groen, A.K., van Roermund, C.W.T., Vervoorn, R.C. and Tager, J.M. 1986. Control of gluconeogenesis in rat liver cells: flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem. J. 237: 379–389.Google Scholar
  50. Gu, M., Kerwin, J.L., Watts, J.D. and Aebersold, R. 1997. Ceramide profiling of complex lipid mixtures by electrospray ionisation mass spectrometry. Anal. Biochem. 24: 347–356.Google Scholar
  51. Halket, J.M., Przyborowska, A., Stein, S.E., Mallard, W.G., Down, S. and Chalmers, R.A. 1999. Deconvolution gas chromatography mass spectrometry of urinary organic acids. Potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun. Mass Spectrom. 13: 279–284.Google Scholar
  52. Heinrich, R. and Rapoport, T.A. 1974. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42: 89–95.Google Scholar
  53. Hofmeyr, J.-H.S. 1995. Metabolic regulation: a control analytic perspective. J. Bioenerget. Biomembr. 27: 479–490.Google Scholar
  54. Hofmeyr, J.-H.S. and Cornish-Bowden, A. 1995. Strategies for manipulating metabolic fluxes in biotechnology. Bioorg. Chem. 23: 439–449.Google Scholar
  55. Hofmeyr, J.-H.S., Cornish-Bowden, A. and Rohwer, J.M. 1993. Taking enzyme kinetics out of control; putting control into regulation. Eur. J. Biochem. 212: 833–837.Google Scholar
  56. Jarvis, A.P. and Morgan, E.D. 1997. Isolation of plant products by supercritical fluid extraction. Phytochem. Anal. 8: 217–222.Google Scholar
  57. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabási, A.-L. 2000. The large-scale organization of metabolic networks. Nature 407: 651–654.Google Scholar
  58. Jellum, E., Kvittingen, E.A. and Stokke, O. 1988. Mass spectrometry in diagnosis of metabolic disorders. Biomed. Environ. Mass Spectrom. 16: 57–62.Google Scholar
  59. Johansen, H.N., Glitso, V. and Knudsen, K.E.B. 1996. Influence of extraction solvent and temperature on the quantitative determination of oligosaccharides from plant materials by high performance liquid chromatography. J. Agric. Food Chem. 44: 1470–1474.Google Scholar
  60. Johnson, H.E., Gilbert, R.J., Winson, M.K., Goodacre, R., Smith, A.R., Rowland, J.J., Hall, M.A. and Kell, D.B. 2000. Explanatory analysis of the metabolome using genetic programming of simple, interpretable rules. Genet. Program Evolv. Mach. 1: 243–258.Google Scholar
  61. Kacser, H. and Burns, J.A.. 1973. The control of flux. Symp. Soc. Exp. Biol. 27: 65–105. Reprinted in 1995 in Biochem. Soc. Trans. 23: 341-366.Google Scholar
  62. Katona, Z.F., Sass, P. and Molnár-Perl, I. 1999. Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry. J. Chromatogr. A 847: 91–102.Google Scholar
  63. KEGG. <http://www.genome.ad.jp/kegg/> Google Scholar
  64. Kell, D.B. and Mendes, P. 2000. Snapshots of systems. In: A.J. Cornish-Bowden and M.L. Cárdenas (Eds.) Technological and Medical Implications of Metabolic Control Analysis, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 3–25.Google Scholar
  65. Kholodenko, B.N., Schuster, S., Rohwer, J.M., Cascante, M. and Westerhoff, H.V. 1995. Composite control of cell function: metabolic pathways behaving as single control units. FEBS Lett. 368: 1–4.Google Scholar
  66. Kim, K.-R., Park, H.-G., Paik, M.-J., Ryu, H.-S., Oh, K.S., Myung, S.-W. and Liebich, H.M. 1998. Gas chromatographic profiling of urinary organic acids from uterine myoma patients and cervical cancer patients. J. Chromatogr. B 712: 11–22.Google Scholar
  67. Kimura, H., Yamamoto, T. and Seiji, Y. 1999. Automated metabolic profiling and interpretation of GC/MS data for organic academia screening: a personal computer-based system. Tohuku J. Exp. Med. 188: 317–344.Google Scholar
  68. Klapa, M.I., Park, S.M., Sinskey, A.J. and Stephanopoulos, G. 1999. Metabolite and isotopomer balancing in the analysis of metabolic cycles. I. Theory. Biotechnol. Bioeng. 62: 375–391.Google Scholar
  69. Kose, F., Weckwerth, W., Linke, T. and Fiehn, O. 2001. Visualising plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics, in press.Google Scholar
  70. Krauss, S. and Quant, P.A. 1996. Regulation and control in complex, dynamic metabolic systems: experimental application of the top-down approaches of metabolic control analysis to fatty acid oxidation and ketogenesis. J. Theor. Biol. 182: 381–388.Google Scholar
  71. Lim, H.K., Stellingwerf, S., Sisenwine, S. and Chan, K.W. 1999. Rapid drug metabolite profiling using fast liquid chromatography, automated multiple-stage mass spectrometry and receptor-binding. J. Chromatogr. A 831: 227–241.Google Scholar
  72. Lukashin, A.V. and Fuchs, R. 2001. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 17: 405–414.Google Scholar
  73. Mendes, P. and Kell, D.B. 1998. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869–883.Google Scholar
  74. Möllney, M., Wiechert, W., Kownatzki, D. and de Graaf, A.A. 1999. Bidirectional reaction steps in metabolic networks. IV. Optimal design of isotopomer labelling experiments. Biotechnol. Bioeng. 66: 86–103.Google Scholar
  75. Namiesnik, J. and Gorecki, T. 2000. Sample preparation for chromatographic analysis of plant material. J. Plan. Chromatogr. 13: 404–413.Google Scholar
  76. Ning, C., Kuhara, T., Inoue, Y., Zhang, C.H., Matsumoto, M., Shinka, T., Furumoto, T., Yokota, K. and Matsumoto. I. 1996. Gas chromatographic mass spectrometric metabolic profiling of patients with fatal infantile mitochondrial myopathy with de Toni-Fanconi-Debre syndrome. Acta Paed. Japon. 38: 661–666.Google Scholar
  77. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa, M. 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 27: 29–34.Google Scholar
  78. Oliver, S.G., Winson, M.K., Kell, D.B. and Baganz, R. 1998. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16: 373–378.Google Scholar
  79. Ong, E.-S., Woo, S.-O. and Yong, Y.-L. 2000. Pressurized liquid extraction of berberine and aristolochic acids in medicinal plants. J. Chromatogr. A 313: 57–64.Google Scholar
  80. Orth, H.C.J., Rentel, C. and Schmidt, P.C. 1999. Isolation, purity analysis and stability of hyperforin as a standard material from Hypericum perforatum L. J. Pharm. Pharmcol. 51: 193–200.Google Scholar
  81. Park, S.M., Klapa, M.I., Sinskey, A.J. and Stephanopoulos, G. 1999. Metabolite and isotopomer balancing in the analysis of metabolic cycles. II. Applications. Biotechnol. Bioeng. 62: 392–401.Google Scholar
  82. Peng, S. and Jayallemand, C. 1991. Use of antioxidants in extraction of tannins from walnut plants. J. Chem. Ecol. 17: 887–895.Google Scholar
  83. Pfeiffer, T., Sánchez-Valdenebro, I., Nuno, J.C., Montero, F. and Schuster, S. 1999. Metatool: for studying metabolic networks. Bioinformatics 15: 251–257.Google Scholar
  84. Poolman, M.G., Fell, D.A. and Thomas, S. 2000. Modelling photosynthesis and its control. J. Exp. Bot. 51: 319–328.Google Scholar
  85. Poolman, M..G., Ölcer, H., Lloyd, J.C., Raines, C.A. and Fell, D.A. 2001. Computer modelling and experimental evidence for two steady-states in the photosynthetic Calvin cycle. Eur. J. Biochem. 368: 2810–2816.Google Scholar
  86. Que, A.M., Palm, A., Baker, A.G. and Novotny, M.V. 2000. Steroid profiles determined by capillary electrochromatography, laser-induced fluorescence detection and electrospray-mass spectrometry. J. Chromatogr. A 887: 379–391.Google Scholar
  87. Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M.C., Berden, J.A., Brindle, K.M., Kell, D.B., Rowland, J.J., Westerhoff, H.V., van Dam, K. and Oliver, S.G. 2001. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19: 45–50.Google Scholar
  88. Raith, K., Zellmer, S., Lasch, J. and Neubert, R.H.H. 2000. Profiling of human stratum corneum ceramides by liquid chromatographyelectrospray mass spectrometry. Anal. Chim. Acta 418: 167–173.Google Scholar
  89. Roberts, J.K.M. 2000. NMR adventures in the metabolic labyrinth within plants. Trends Plant Sci. 5: 30–34.Google Scholar
  90. Robertson, D.G., Reily, M.D., Sigler, R.E., Wells, D.F., Paterson, D.A. and Braden, T.K. 2000. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol. Sci. 57: 326–337.Google Scholar
  91. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L. and Fernie, A.R. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29.Google Scholar
  92. Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N. and Willmitzer, L. 2000. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23: 131–142.Google Scholar
  93. Sargenti, S.R. and Vichnewski, W. 2000. Sonication and liquid chromatography as a rapid technique for extraction and fractionation of plant material. Phytochem. Anal. 11: 69–73.Google Scholar
  94. Sauter, H., Lauer, M. and Fritsch, H. 1991. Metabolic profiling of plants: a new diagnostic technique. ACS Symp. Ser. 443: 288–299.Google Scholar
  95. Schmidt, K., Carlsen, M., Nielsen, J. and Villadsen, J. 1997. Modelling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55: 831–840.Google Scholar
  96. Schuster, S. 1999. Studies on the stoichiometric structure of enzymatic reaction systems. Theory Biosci. 118: 125–139.Google Scholar
  97. Schuster, S., Dandekar, T. and Fell, D.A. 1999. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17: 53–60.Google Scholar
  98. Schuster, S., Fell, D.A. and Dandekar, T. 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. 18: 326–332.Google Scholar
  99. Shetty, H.U., Holloway, H.W. and Rapoport, S.I. 1995. Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal. Biochem. 224: 279–285.Google Scholar
  100. Smedsgaard, J. and Frisvad, J.C. 1996. Using direct electrospray mass spectrometry in taxonomy and secondary metabolite pro-filing of crude fungal extracts. J. Microbiol. Meth. 25: 5–17.Google Scholar
  101. Srere, P.A. 1985. The metabolon. Trends Biochem. Sci. 10: 109–110.Google Scholar
  102. Starmans, D.A.J. and Nijhuis, H.H. 1996. Extraction of secondary metabolites from plant material: a review. Trends Food Sci. Technol. 7: 191–197.Google Scholar
  103. Stein, S.E. 1999. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10: 770–781.Google Scholar
  104. Streeter J.G. and Strimbu C.E. 1998. Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal. Biochem. 259: 253–257.Google Scholar
  105. Szyperski, T. 1998. 13C-NMR, MS and metabolic flux balancing in biotechnology research. Quant. Rev. Biophys. 31: 41–106.Google Scholar
  106. Tanaka, K., Hine, D.G., West-Dull, A. and Lynn, T.B. 1980a. Gaschromatographic method of analysis of urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin. Chem. 26: 1839–1846.Google Scholar
  107. Tanaka, K., West-Dull, A., Hine, D.G., Lynn, T.B. and Lowe, T. 1980b. Gas-chromatographic method of analysis of urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin. Chem. 26: 1847–1853.Google Scholar
  108. Taylor, J., Goodacre, R., Wade, W.G., Rowland, J.J. and Kell, D.B. 1998. The deconvolution of pyrolysis mass spectra using genetic programming: application to the identification of some Eubacterium species. FEMS Microbiol. Lett. 160: 237–246.Google Scholar
  109. Teusink, B., Baganz, F., Westerhoff, H.V. and Oliver, S.G. 1998. Metabolic control analysis as a tool in the elucidation of the function of novel genes. Meth. Microbiol. 26: 297–336.Google Scholar
  110. Thomas, S., Mooney, P.J.F., Burrell, M.M. and Fell, D.A. 1997. Metabolic control analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochem J. 332: 119–127.Google Scholar
  111. Trethewey, R.N., Geigenberger, P., Riedel, K., Hajurezaei, M.R., Sonnewald, U., Stitt, M., Riesmeier, J.W. and Willmitzer, L. 1998. Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J. 15: 109–118.Google Scholar
  112. Trethewey, R.N., Krotzky, A.J. and Willmitzer, L. 1999. Metabolic profiling: a Rosetta stone for genomics? Curr. Opin. Plant Biol. 2: 83–85.Google Scholar
  113. Tweeddale, H., Notley-McRobb, L. and Ferenci, T. 1998. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ('metabolome') analysis. J. Bact. 180: 5109–5116.Google Scholar
  114. Velot, C., Mixon, M.B., Teige, M. and Srere, P.A. 1997. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36: 14271–14276.Google Scholar
  115. Vingron, M. and Hoheisel, J. 1999. Computational aspects of expression data. J. Mol. Med. 77: 3–7.Google Scholar
  116. Warne, M.A., Lenz, E.M., Osborn, D., Weeks, J.M. and Nicholson, J.K. 2000. An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers 5: 56–72.Google Scholar
  117. Wiechert, W. and de Graaf, A.A. 1997a. Bidirectional reaction steps in metabolic networks. I. Modeling and simulation of carbon isotope labelling experiments. Biotechnol. Bioeng. 55: 112–117.Google Scholar
  118. Wiechert, W., Siefke, C., de Graaf, A.A. and Marx, A. 1997b. Bidirectional reaction steps in metabolic networks. II. Flux estimation and statistical analysis. Biotechnol. Bioeng. 55: 118–135.Google Scholar
  119. Wiechert, W., Möllney, M., Isermann, N., Wurzel, M. and de Graaf, A.A. 1999. Bidirectional reaction steps in metabolic networks. III. Explicit solution and analysis of isotopomer systems. Biotechnol. Bioeng. 66: 69–85.Google Scholar
  120. Wolfender, J.L., Rodriguez, S. and Hostettmann, K. 1998. Liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance for the screening of plant constituents. J. Chromatogr. A 794: 299–316.Google Scholar
  121. World Health Organization. 2000. Safety aspects of genetically modified foods of plant origins. In: Report of a joint FAO/WHO expert consultation on foods derived from biotechnology, held in Geneva, Switzerland, 29 May-2 June 2000. World Health Organization, Geneva, pp. 1–35.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Oliver Fiehn
    • 1
  1. 1.Max-Planck Institute of Molecular Plant PhysiologyGermany

Personalised recommendations