Skip to main content
Log in

Plant Phenolics as Dietary Antioxidants for Herbivorous Insects: A Test with Genetically Modified Tobacco

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

High foliar phenolics are generally assumed to increase resistance to insect herbivores, but recent studies show that tobacco lines modified to over– and underexpress phenolics do not exhibit higher constitutive resistance to caterpillars. This is contrary to the expectation that ingestion of tobacco phenolics, particularly chlorogenic acid, should cause oxidative stress in herbivores. We investigated free radical production and antioxidant capacity of fresh crushed leaves of tobacco lines exhibiting over a sixfold difference in chlorogenic acid content to test whether high phenolic concentrations are associated with increased production of reactive oxygen species (ROS). The effects of in planta phenolic levels on feeding behavior, growth, biochemical markers of oxidative stress, and the antioxidant capacity of midgut fluid and hemolymph were assessed in tobacco budworm, Heliothis virescens. The experiments showed that high phenolic foliage was more prooxidant than low phenolic foliage, but the net balance in crushed tissue was antioxidant in comparison to buffer and the commercial antioxidant standard, Trolox. In H. virescens, the antioxidant capacity of midgut fluid was also powerful, and caterpillars fed high phenolic foliage did not exhibit the expected markers of oxidative stress in midgut tissues (altered ascorbate ratios, disulfides, or total hydroperoxides). Instead, hemolymph of larvae fed high phenolic foliage exhibited improved total Trolox equivalent antioxidant capacity (TEAC). These results suggest that the elevated foliar phenolics in some plants may have beneficial antioxidant properties for herbivorous insects, much as dietary phenolics do in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • AFANSAS'E, I. B., DOROZHKO, A. I., BRODSKII, V., KOSTYIK, A., and POTAPOVITCH, A. I. 1989. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 38:1763–1769.

    PubMed  Google Scholar 

  • AHMAD, S. 1992. Biochemical defense of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20:269–296.

    Google Scholar 

  • AHMAD, S. and PARDINI, R. S. 1990. Antioxidant defense of the cabbage looper, Trichoplusia ni: Enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin. Photochem. Photobiol. 51:305–311.

    Google Scholar 

  • ALI, M. I., BI, J. L., YOUNG, S. Y., and FELTON, G. W. 1999. Do foliar phenolics provide protection to Heliothis virescens from a baculovirus? J. Chem. Ecol. 25:2193–2204.

    Google Scholar 

  • ANDERSON, W. L. and WETLAUFER, D. B. 1975. A new method for disulfide analysis of peptides. Anal. Biochem. 67:493–502.

    PubMed  Google Scholar 

  • APPEL, H. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1552.

    Google Scholar 

  • APPEL, H. M. 1994. The chewing herbivore gut lumen: Physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens, pp. 210–223, in E. A. Bernays (ed.). Insect-Plant Interactions, Vol V. CRC Press, Ann Arbor, Michigan.

    Google Scholar 

  • APPEL, H. M. and MARTIN, M. M. 1990. Gut redox conditions in herbivorous lepidopteran larvae. J. Chem. Ecol. 16:3277–3290.

    Google Scholar 

  • APPEL, H. M. and SCHULTZ, J. C. 1992. Activity of phenolics in insects: The role of oxidation, pp. 609–620, in R. W. Hemingway and P. E. Laks (eds.). Plant Polyphenols, Plenum Press, New York.

    Google Scholar 

  • BARBEHENN, R. V. and MARTIN, M. M. 1994. Tannin sensitivity in larvae of Malacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation. J. Chem. Ecol. 20:1985–2001.

    Google Scholar 

  • BARBEHENN, R. V., BUMGARNER, S. L., ROOSEN, E. F., and MARTIN, M. M. 2001. Antioxidant defenses in caterpillars: Role of the ascorbate-recycling system in the midgut lumen. J. Insect Physiol. 47:349–357.

    PubMed  Google Scholar 

  • BATE, N. J., ORR, J., NI, W., MEROMI, A., NADLER-HASSAR, T., DOERNER, P. W., DIXON, R. A., LAMB, C. J., and ELKIND, Y. 1994. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA 91:7608–7612.

    PubMed  Google Scholar 

  • BERNAYS, E. A. 1981. Plant tannins and insect herbivores: An appraisal. Ecol. Entomol. 6:353–361.

    Google Scholar 

  • BERNAYS, E. A., COOPER-DRIVER, G., and BILGENER, M. 1989. Herbivores and plant tannins. Adva. Ecol. Res. 19:263–275.

    Google Scholar 

  • BI, J. L., FELTON, G. W., and MUELLER, A. J. 1994. Induced resistance in soybean to Helicoverpa zea: Role of plant protein quality. J. Chem. Ecol. 20:183–198.

    Google Scholar 

  • BI, J. L., FELTON, G. W., MURPHY, J. B, HOWLES, P. A., DIXON, R. A., and LAMB, C. J. 1997a. Do plant phenolics confer resistance to specialist and generalist insect herbivores? J. Agric. Food Chem. 45:4500–4504.

    Google Scholar 

  • BI, J. L., MURPHY, J. B., and FELTON, G. W. 1997b. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J. Chem. Ecol. 23:95–115.

    Google Scholar 

  • BOER, G. DE and HANSON, F. E. 1987. Feeding responses to solanaceous allelochemicals by larvae of the tobacco hornworm, Manduca sexta. Entomol. Exp. Appl. 35:177–193.

    Google Scholar 

  • DELANEY, T. P., UKNES, S., VERNOOIJ, B. FRIEDRICH, L., WEYMANN, K., NEGROTTO, D., GAFFNEY, T., GUT-RELLA, M., KESSMAN, H., WARD, and E., RYALS. 1994. A central role for salicylic acid in disease resistance. Science 266:1247–1250.

    Google Scholar 

  • DUFFEY, S. S. and FELTON, G. W. 1991. Enzymatic antinutritive defenses of tomato plants against insects, pp. 167–197, in P. A. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society Symp. Ser. 449. Washington, D.C.

  • EICHENSEER, H., BI, J. L., and FELTON, G. W. 1998. Indiscrimination of Manduca sexta larvae to overexpressed and underexpressed levels of phenylalanine ammonia-lyase in tobacco leaves. Entomol. Exp. Appl. 87:73–78.

    Google Scholar 

  • EICHENSEER, H., MATHEWS, M. C., BI, J. L., MURPHY, J. B., and FELTON, G. W. 1999. Salivary glucose oxidase: Multifunctional roles for Helicoverpa zea? Arch. Insect Biochem. Physiol. 42:99–109.

    PubMed  Google Scholar 

  • ELKIND, Y., EDWARDS, R., MAVANDAD, M., HEDRICK, S. A., RIBAK, O., DIXON, R. A., and LAMB, C. J. 1990. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc. Natl. Acad. Sci. USA 87:9057–9061.

    PubMed  Google Scholar 

  • ELLIGER, C. A., WONG, Y., CHAN, B. G., and WAISS, A. C., JR. 1981. Growth inhibitor in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 5:753–758.

    Google Scholar 

  • FEENY, P. P. 1976. Plant apparency and chemical defense, pp. 1–40, in J. Wallace and R. L. Mansell (eds.). Biochemical Interactions Between Plants and Insects. Recent Advances in Phytochemistry, Vol. 10, Plenum Press, New York.

    Google Scholar 

  • FELTON, G. W. and DUFFEY, S. S. 1991. Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses. J. Chem. Ecol. 17:1715–1732.

    Google Scholar 

  • FELTON, G. W., DONATO, K. K., DEL VECCHIO, R. J., and DUFFEY, S. S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Insect Physiol. 38:277–285.

    Google Scholar 

  • FELTON, G. W., DONATO, K. K., DEL VECCHIO, R. J., BROADWAY, R. M., and DUFFEY, S. S. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore. J. Insect Physiol. 38:277–285.

    Google Scholar 

  • FELTON, G. W., KORTH, K. L., BI, J. L., WESLEY, S. V., HUHMAN, D. V., MATHEWS, M. C., MURPHY, J. B., LAMB, C., and DIXON, R. A. 1999. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr. Biol. 9:317–320.

    PubMed  Google Scholar 

  • FREI, B. 1994. Natural Antioxidants in Human health and Disease. Academic Press, New York.

    Google Scholar 

  • GAFFNEY, T., FRIEDRICH, L., VERNOOIJ, B., NEGROTTO, D., NYE, G., UKNES, S., WARD, E., KESSMAN, H., and RYALS, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756.

    Google Scholar 

  • GRYGLEWSKI, R. J., KORBUT, R., ROBAK, J., and SWIES, J. 1987. On the mechanism of antithrombic action of flavonoids. Biochem. Pharmacol. 36:317–322.

    PubMed  Google Scholar 

  • HARBORNE, J. B. 1991. Flavonoid Pigments, pp 389–429, in G. A. Rosenthal and M. B. Berenbaum (eds.). Herbiveres: Their Interactions with Secondary Plant Metabolites, Vol I. Academic Press, New York.

    Google Scholar 

  • HERTZOG, M. G. L., SWEETNAM, P. M., FEHILY, A. M., ELMWOOD, P. C., and KROMHOUT, D. 1997. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: The Caerphilly study. Am. J. Clin. Nutr. 65:1489–1494.

    PubMed  Google Scholar 

  • HODNICK, W. F., KALYANARAMAN, B., PRITSOS, C. A., and PARDINI, R. S. 1989. The production of hydroxyl and semiquinone free radicals during the autooxidation of redox active flavonoids, pp. 149–152, in M. G. Simic, K. A. Taylor, J. F. Ward, and C. von Sonntag (eds.). Oxygen Radicals in Biology and Medicine. Plenum Press, New York.

    Google Scholar 

  • HOOVER, K., KISHIDA, K. T., DIGIORGIO, L. A., WORKMAN, J., ALANIZ, S. A., HAMMOCK, B. D., and DUFFEY, S. S. 1998a. Inhibition of baculoviral disease by plant-mediated peroxidase activity and free radical generation. J. Chem. Ecol. 24:1949–2000.

    Google Scholar 

  • HOOVER, K., STOUT, M., ALANIZ, S. A., HAMMOCK, B. D., and DUFFEY, S. S. 1998b. Influence of induced plant defenses in cotton and tomato on the efficacy of baculoviruses on noctuid larvae. J. Chem. Ecol. 24:253–271.

    Google Scholar 

  • HOOVER, K., YEE, J. L., SCHULTZ, C. M., ROCKE, D. M., HAMMOCK, B. D., and DUFFEY, S. S. 1998c. Effects of plant identity and chemical constituents on the efficacy of a baculovirus against Heliothis virescens. J. Chem. Ecol. 24:221–252.

    Google Scholar 

  • HOWLES, P. A., SEWALT, V. J. H., PAVIA, N. J., ELKIND, Y., BATE, N. J., LAMB, C., and DIXON, R. A. 1996. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol. 112:1617–1624.

    PubMed  Google Scholar 

  • ISMAN, M. B. and DUFFEY, S. S. 1982a. Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Entomol. Exp. Appl. 31:370–376.

    Google Scholar 

  • ISMAN, M. B. and DUFFEY, S. S. 1982b. Phenolic compounds in the foliage of commercial tomato cultivars as growth inhibitors to the fruitworm, Heliothis zea. J. Am. Hortic. Sci. 107:167–170.

    Google Scholar 

  • ISMAN, M. B. and DUFFEY, S. S. 1983. Pharmacokinetics of chlorogenic acid and rutin in larvae of Heliothis zea. J. Insect Physiol. 29:295–300.

    Google Scholar 

  • JIANG, Z., HUNT, J. V., and WOLFF, S. P. 1992. Ferrous iron oxidation in the presence of xylenol orange for detection of lipid hydroperoxides in low density lipoprotein. Anal. Biochem. 202:384–389.

    PubMed  Google Scholar 

  • JOHNSON, K. S. and BARBEHENN, R. V. 2000. Oxygen levels in the gut lumens of herbivorous insects. J. Insect Physiol. 46:897–903.

    PubMed  Google Scholar 

  • KAHL, R. 1991. Protective and adverse biological actions of phenolic antioxidants, pp. 245–273, in H. Seis (ed.). Oxidative Stress: Oxidants and Antioxidants. Academic Press, New York.

    Google Scholar 

  • LEE, K. and BERENBAUM, M. R. 1989. Action of antioxidant enzymes and cytochrome P-450 monooxygenases in the cabbage looper in response to plant phototoxins. Arch. Insect Biochem. Physiol. 10:151–162.

    Google Scholar 

  • LINDROTH, R. L. and PETERSON, S. S. 1988. Effects of plant phenols on performance of southern armyworm larvae. Oecologia 75:185–189.

    Google Scholar 

  • MAHER, E. A., BATE, N. J., NI, W., ELKIND, Y., DIXON, R. A., and LAMB, C. J. 1994. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Natl. Acad. Sci. USA 91:7802–7806.

    PubMed  Google Scholar 

  • MARTIN, J. S., MARTIN, M. M., and BERNAYS, E. A. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: Implications for theories of plant defense. J. Chem. Ecol. 13:605–621.

    Google Scholar 

  • MATHEWS, M. C., SUMMERS, C. B., and Felton, G. W. 1997. Ascorbate peroxidase: A novel antioxidant enzyme in insects. Arch. Insect Biochem. Physiol. 34:57–68.

    Google Scholar 

  • MAXWELL, S. R. J. 1997. Wine antioxidants and their impact on antioxidant activity in vivo, pp 150–165, in T. R. Watkins (ed.). Wine: Nutritional and Therapeutic Benefits. American Chemical Society, Washington, D.C.

    Google Scholar 

  • MILLER, N. J. and RICE-EVANS, C. A. 1994. Total antioxidative status in plasma and body fluids. Methods Enzymol. 234:279–293.

    PubMed  Google Scholar 

  • MORONEY, M. A., ALCARAC, M. J., FORDER, R. A., CAREY, F., and HOULT, J. R. S. 1988. Selectivity of neutrophil 5-lipoxygenase and cyclo-oxygenase inhibition by an anti-inflammatory flavonoid glycoside and related aglycone flavonoids. J. Pharm. Pharmacol. 40:787–792.

    PubMed  Google Scholar 

  • PALLAS, J. A., PAIVA, N. L., LAMB, C., and DIXON, R. A. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 10:281–293.

    Google Scholar 

  • PINCEMAIL, J., DEBY, C., LION, Y., BRAQUET, P., HANS, P., DRIEU, K., and GOUTIER, R. 1986. Role of flavonoids in lipoperoxidation and radicalar reactions, pp 423–436, in L. Parkas, M. Gabor, and F. Kallay (eds.). Flavonoids and Bioflavonoids. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • PRITSOS, C. A., AHMAD, S., BOWEN, S. M., ELLIOTT, A. J., BLOMQUIST, G. J., and PARDINI, R. S. 1988. Antioxidant enzymes of the black swallowtail butterfly, Papilio polyxenes, and their response to the prooxidant allelochemical, quercetin. Arch. Insect Biochem. Physiol. 8:101–112.

    Google Scholar 

  • REESE, J. C., and BECK, S. D. 1976. Effects of allelochemicals on the black cutworm, Agrotis ipsilon; effects of catechol, L-DOPA, dopamine and chlorogenic acid on larval growth, development and utilization of food. Ann. Entomol. Soc. Am. 69:68–72.

    Google Scholar 

  • RICE-EVANS, C. A., MILLER, N. J., BOLWELL, P. G., BRAMLEY, P. M., and PRIDHAM, J. B. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22:375–383.

    PubMed  Google Scholar 

  • RICE-EVANS, C. A., MILLER, N. J., and PAGANGA, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933–956.

    PubMed  Google Scholar 

  • SEWALT, V. J. H., NI, W., JUNG, H. G., and DIXON, R. A. 1997. Lignin impact on fiber degradation: Increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem. 45:1977–1983.

    Google Scholar 

  • STAMP, N. E. and YANG, Y. 1996. Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 77:1088–1102.

    Google Scholar 

  • STAMP, N. E., TEMPLE, M., TRAUGOTT, M. S., and WILKENS, R. T. 1994. Temperature-allelochemical interactive effects on performance of Manduca sexta caterpillars. Entomol. Exp. Appl. 73:199–210.

    Google Scholar 

  • STEINLY, B. A. and BERENBAUM, M. 1985. Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papilio glaucus. Entomol. Exp. Appl. 39:3–9.

    Google Scholar 

  • SUMMERS, C. B. and FELTON, G. W. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem. Mol. Biol. 24:943–953.

    Google Scholar 

  • TAKAHAMA, U. 1985. O2 - dependent and independent photooxidation of quercetin in the presence and absence of riboflavin and effect of ascorbate on the photooxidation. Photochem. Photobiol. 42:89–91.

    PubMed  Google Scholar 

  • WAISS, A. C., CHAN, B. G., ELLIGER, C. A., DRYER, D. L., BINDER, R. G., and GULEDNER, R. C. 1981. Insect growth inhibitors in crop plants. Entomol. Soc. Am. Bull. 27:217–221.

    Google Scholar 

  • WRUBEL, R. P. and BERNAYS, E. A. 1990. The relative insensitivity of Manduca sexta to non-host plant secondary compounds. Entomol. Exp. Appl. 54:117–124.

    Google Scholar 

  • YANG, Y., STAMP, N. E., and OSIER, T. L. 1996. Effects of temperature, multiple allelochemicals and larval age on the performance of a specialist caterpillar. Entomol. Exp. Appl. 79:335–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, K.S., Felton, G.W. Plant Phenolics as Dietary Antioxidants for Herbivorous Insects: A Test with Genetically Modified Tobacco. J Chem Ecol 27, 2579–2597 (2001). https://doi.org/10.1023/A:1013691802028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013691802028

Navigation