Advertisement

Bioscience Reports

, Volume 21, Issue 2, pp 237–245 | Cite as

Possible Basic and Specific Functions of Plant Uncoupling Proteins (pUCP)

  • Petr Ježek
  • Jirí Borecký
  • Markèta Zácková
  • Alexandre D. T. Costa
  • Paulo Arruda
Article

Abstract

Evidence has been provided that the plant uncoupling proteins (pUCP) play basic physiological roles similar to the other uncoupling protein subfamily members (mammalian UCP1,2,3,4 and BMCP) and are effective in the situations of slight uncoupling that leads to: (1) accelerated respiration and metabolic rates that are beneficial to plant growth and development; (2) decreased formation of reactive oxygen species in mitochondria; and, (3) mild thermogenesis, inevitably accompanying the previous two phenomena. Hypothetically, specific physiological roles of pUCP such as cut off of ATP synthesis could be manifested in connection with climacteric respiratory rise during fruit ripening, seed dormancy, and plant senescence. pUCP might also facilitate growth under low temperatures, e.g., during seed germination or in roots. The existence of these specific roles is suggested by the immunochemical and functional localization of pUCP in mitochondria of fruits, seeds and roots of various plant species.

Fatty acid-induced uncoupling plant uncoupling mitochondrial protein plant mitochondria mild thermogenesis in plant fruit ripening seed dormancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Vercesi, A. E., Martins, I. S., Silva, M. A. P., Leite, H. M. F., Cuccovia, I. M., and Chaimovich, H. (1995) Nature 375:24.Google Scholar
  2. 2.
    El Moualij, B., Duyckaerts, C., Lamotte-Brasseur, J., and Sluse, F. E. (1997) Yeast 13:573-581.Google Scholar
  3. 3.
    Ježek, P. and Urbanková, E. (2000) IUBMB-Life 49:63-70.Google Scholar
  4. 4.
    Ježek, P. and Garlid, K. D. (1997) Int. J. Biochem. Cell Biol. 30:1163-1168.Google Scholar
  5. 5.
    Fleury, C. et al. (1997) Nature Genetics 15:269-272.Google Scholar
  6. 6.
    Boss, O. et al. (1997) FEBS Lett. 408:39-42.Google Scholar
  7. 7.
    Mao, W. et al. (1999) FEBS Lett 433:326-330.Google Scholar
  8. 8.
    Sanchis, D. et al. (1998) J. Biol. Chem. 273:34611-34615.Google Scholar
  9. 9.
    Laloi, M. et al. (1997) Nature 389:135-136.Google Scholar
  10. 10.
    Maia, I. G., Benedetti, C. E., Leite, A., Turcinelli, S. R., Vercesi, A. E., and Arruda, P. (1998) FEBS Lett. 429:403-406.Google Scholar
  11. 11.
    Ježek, P., Costa, A. D. T., and Vercesi, A. E. (1996) J. Biol. Chem. 271:32743-32748.Google Scholar
  12. 12.
    Ježek, P., Costa, A. D. T., and Vercesi, A. E. (1997) J. Biol. Chem. 272:24272-24278.Google Scholar
  13. 13.
    Costa, A. D. T., Nantes, I. L., Ježek, P., Leite, A., Arruda, P., and Vercesi, A. E. (1999) J. Bioenerg. Biomembr. 31:527-533.Google Scholar
  14. 14.
    Ježek, P. et al. (1998) Biochim. Biophys. Acta 1365:319-327.Google Scholar
  15. 15.
    Vercesi, A. E., Chaimovich, H., and Cuccovia, I. M. (1997) Recent Res. Devel. Plant Physiol. 1:85-91.Google Scholar
  16. 16.
    Vercesi, A. E., Ježek, P., Costa, A. D. T., Kowaltowski, A. J., Maia, I. G., and Arruda, P. (1998) In: Plant Mitochondria: From Gene to Function (Moller, I. M., Gardeström, P., Glimelius and Glaser, E. eds.), Backhuys Publishers, Leiden, The Netherlands, pp. 435-440.Google Scholar
  17. 17.
    Kowaltowski, A. J., Costa, A. D. T., and Vercesi, A. E. (1998) FEBS Lett. 425:213-216.Google Scholar
  18. 18.
    Nantes, I. L., Fagian, M. M., Catisti, R., Arruda, P., Maia, I. G., and Vercesi, A. E. (1999) FEBS Lett. 457:103-106.Google Scholar
  19. 19.
    Sluse, F. E., Almeida, A. M., Jarmuszkiewicz, W., and Vercesi, A. E. (1998) FEBS Lett. 433:237-240.Google Scholar
  20. 20.
    Jarmuszkiewicz, W., Almeida, A. M., Sluse-Goffart, C., Sluse, F. E., and Vercesi, A. E. (1998) J. Biol. Chem. 273:34882-34886.Google Scholar
  21. 21.
    Almeida, A. M., Jarmuszkiewicz, W., Khomsi, H., Arruda, P., Vercesi, A. E., and Sluse, F. E. (1999) Plant Physiol. 119:1-7.Google Scholar
  22. 22.
    Ježek, P., Zácková, M., Brucknerová, J., Rodrigues, E. T. S., Madeira, V. M. C., and Vicente, A. F. (2000) J. Bioenerg. Biomembr. 32:549-561.Google Scholar
  23. 23.
    Saviani, E. E., DaSilva, Jr., A., and Martins, I. S. (1997) Plant Physiol. Biochem. 35:701-706.Google Scholar
  24. 24.
    Jaburek, M. et al. (1999) J. Biol. Chem. 274:26003-26007.Google Scholar
  25. 25.
    Skulachev, V. P. (1991) FEBS Lett. 294:158-162.Google Scholar
  26. 26.
    Garlid, K. D., Orosz, D. E., Modriansky, M., Vassanelli, S., and Ježek, P. (1996) J. Biol. Chem. 271:2615-2620.Google Scholar
  27. 27.
    Ježek, P., Modriansky, M., and Garlid, K. D. (1997) FEBS Lett. 408:161-165.Google Scholar
  28. 28.
    Ježek, P., Modriansky, M., and Garlid, K. D. (1997) FEBS Lett. 408:166-170.Google Scholar
  29. 29.
    Wojtczak, L., Wieckowski, M. R., and Schönfeld, P. (1998) Arch. Biochem. Biophys. 357:76-84.Google Scholar
  30. 30.
    Samartsev, V. N., Mohkova, E. N., and Skulachev, V. P. (1997) FEBS Lett. 412:179-182.Google Scholar
  31. 31.
    Ruzicka, M., Novák, P., Zácková, M., Costa, A. D. T., Vercesi, A. E., and Ježek, P. (1999) In: Proceedings of the XXVIII Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology, SBBq, Caxambu MG, Brazil, May 22–25, p. 3, (poster A13).Google Scholar
  32. 32.
    Stucki, J. W. (1980) Eur. J. Biochem. 109:269-283.Google Scholar
  33. 33.
    Skulachev, V. P. (1996) FEBS Lett. 397:7-10.Google Scholar
  34. 34.
    Negre-Salvayre, A. et al. (1997) FASEB J. 11:809-815.Google Scholar
  35. 35.
    Kidd, F. and West, C. (1922) Report of the Federal Investment Board for 1921, p. 17.Google Scholar
  36. 36.
    Hulme, A. C. ed. (1971) The Biochemistry of Fruits and their Products Vol. 2. Academic Press, London.Google Scholar
  37. 37.
    Kumar, S. and Sinha, S. K. (1992) J. Exp. Bot. 43:1639-1642.Google Scholar
  38. 38.
    Rhodes, M. J. C. (1970) In: The Biochemistry of Fruits and their Products Vol. 1 (Hulme, A. C., ed.), Academic Press, London, pp. 521-533.Google Scholar
  39. 39.
    Gardeström, P. and Lernmark, U. (1995) J. Bioenerg. Biomembr. 27:415-421.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Petr Ježek
    • 1
  • Jirí Borecký
    • 1
  • Markèta Zácková
    • 1
  • Alexandre D. T. Costa
    • 2
  • Paulo Arruda
    • 3
  1. 1.Department of Membrane Transport Biophysics No. 375, Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Departamento de Patologia Clínica (NMCE), Faculdade de Ciências MédicasUniversidade Estadual de CampinasCampinas, SPBrazil
  3. 3.Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de CampinasCampinas, SPBrazil

Personalised recommendations