Skip to main content
Log in

Properties of Granular Media and Transportation Mechanism of Subaqueous Debris Flows

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Principles of the transportation mechanism for a large number of interacting discrete solid particles were developed thanks to the progress in physics and mechanics of granular media. Velocity fluctuations and nonelastic collisions of fragments or their aggregates lead to the liquefaction of the clastic mass-flow, providing its travel over a long distance and simultaneously producing its sorting and stratification. Results of laboratory and field investigations carried out during the last 15 years with the use of high-precision equipment showed that this transportation mechanism is typical of slumps, debris flows, grain flows, high-density turbidity currents, and bottom avalanche transport. The universality of this mechanism made it possible to simplify the classification of subaqueous gravitational processes, propose an idealized scheme of bottom erosion processes, and interpret the Bouma cycle sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ackermann, N.L. and Shen, H., Stresses in Rapidly Sheared Fluid-Solid Mixtures, J. Eng. Mech. Div. ASCE, 1982, vol. 108, pp. 95–113.

    Google Scholar 

  • Allan, A. and Frostick, L., Framework Dilation, Winnowing, and Matrix Particle Size: the Behavior of Some Sand-Gravel Mixtures in Laboratory Flume, J. Sed. Res., 1999, vol. 69, no. 1, pp. 21–26.

    Google Scholar 

  • Bagnold, R.A., Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear, Proc. R. Soc. London, 1954, Ser. A, vol. 225, pp. 49–63.

    Google Scholar 

  • Bagnold, R.A., Auto-Suspension of Transported Sediment; Turbidity Currents, Proc. R. Soc. London, 1962, Ser. A, vol. 265, pp. 315–319.

    Google Scholar 

  • Bjorlykke, K., Sedimentology and Petroleum Geology, Berlin: Springer, 1984.

    Google Scholar 

  • Blekhman, I.I., Vibratsionnaya mekhanika (The Vibration Mechanics), Moscow: Fiz.-Mat. Literatura, 1994.

    Google Scholar 

  • Blekhman, L.I. and Kizeval'ter, B.V., The Flow Rate Distribution Velocities on Vibrational Separator Decks for Gravitational Concentration, Obogashchenie Rud, 1981, no. 4, pp. 21-24.

  • Bouma, A.H., Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation, Amsterdam: Elsevier, 1962.

    Google Scholar 

  • Campbell, C.S., Rapid Granular Flows, Ann. Rev. Fluid Mech., 1990, vol. 22, pp. 57–92.

    Google Scholar 

  • Campbell, C.S., Large-Scale Landslide Simulations: Global Deformation, Velocities and Basal Friction, J. Geophys. Res., 1995, vol. 100, no. B5, pp. 8267–8283.

    Google Scholar 

  • Campbell, C.S. and Brennen, C.E., Computer Simulation of Granular Shear Flows, J. Fluid Mech., 1985a, vol. 151, pp. 88–167.

    Google Scholar 

  • Campbell, C.S. and Brennen, C.E., Chute Flows of Granular Material: Some Computer Simulations, Trans. ASME J. Appl. Mech., 1985b, vol. 52, pp. 172–178.

    Google Scholar 

  • Cantwell, B.J., Organized Motion in Turbulent Flow, Ann. Rev. Fluid. Mech., 1981, vol. 13, pp. 457–515.

    Google Scholar 

  • Damuth, J.E., Flood, R.D., Pirmez, C., and Manley, P.L., Anatomy and Growth Pattern of Amazon Deep-Sea Fan as Revealed by Long-Range Side-Scan Sonar (GLORIA) and High-Resolution Seismic Studies, Am. Assoc. Pet. Geol. Bull., 1988, vol. 72, pp. 855–911.

    Google Scholar 

  • Field, M.E., Gardner, J.V., and Prior, D.B., Geometry and Significance of Stacked Gullies on the Northern California Slope, Mar. Geol., 1999, vol. 154, pp. 271–286.

    Google Scholar 

  • Frolov, V.T., Litologiya (Lithology), Moscow: Mosk. Gos. Univ., 1995, part 3.

    Google Scholar 

  • Galanov, L.G. and Saf'yanov, G.A., Sediments, Relief, and Lithodynamics of Headwaters of the Ingur Subaqueous Canyon, Doklady simpoziuma po inzhenerno-geologicheskim usloviyam shel'fovoi zony Chernogo morya (Reports: Symposium on Engineering Geology of the Black Sea Shelf Zone), Tbilisi, 1972, pp. 234-244.

  • Grishin, N.N., Mekhanika pridonnykh nanosov (Mechanics of Bed Loads), Moscow: Nauka, 1982.

    Google Scholar 

  • Hampton, M.A., The Role of Subaqueous Debris Flow in Generating Turbidity Currents, J. Sed. Petrol., 1972, vol. 42, no. 4, pp. 775–793.

    Google Scholar 

  • Hampton, M.A., Competence of Fine-Grained Debris Flows, J. Sed. Petrol., 1975, vol. 45, no. 4, pp. 834–844.

    Google Scholar 

  • Hampton, M.A. and Lee, H.J., Submarine Landslides, Rev. Geophys., 1996, vol. 34, pp. 33–59.

    Google Scholar 

  • Hayashi, J.N. and Self, S., A Comparison of Pyroclastic Flow and Debris Avalanche Mobility, J. Geophys. Res., 1992, vol. 97, no. 6, pp. 9063–9071.

    Google Scholar 

  • Heim, A., Bergsturz und Menschenleben, Zürich: Verlag Fretz und Wasmuth, 1932, pp. 1–218.

    Google Scholar 

  • Jaeger, H.M., Nagel, S.R., and Behringer, R.P., The Physics of Granular Materials, Phys. Today, 1996, vol. 1, pp. 32–38.

    Google Scholar 

  • Julien, P.Y. and Lan, Y., Laboratory Experiments on Lamination, Stratification and Desiccation, Fort Collins: Colorado State Univ., 1990.

    Google Scholar 

  • Kenett, J.P., Marine Geology, Englewood Cliffs (USA): Prentice-Hall, 1982. Translated under the title Morskaya geologiya, Moscow: Mir, 1987, vol. 2.

    Google Scholar 

  • Khvorova I.V. Facies of Subaqueous Gravitites, Genezis osadkov i fundamental'nye problemy litologii (Genesis of Sediments and Fundamental Problems of the Lithology), Moscow: Nauka, 1989, pp. 37–57.

    Google Scholar 

  • Konyukhov, A.I., Subaqueous Fan of the Danube River: Specific Features of the Structure and Accumulation of Sediments, Litol. Polezn. Iskop., 1997, no. 3, pp. 227-238.

  • Kuenen, Ph.H. and Migliorini, C.I., Turbidity Currents as a Cause of Graded Bedding, J. Geol., 1950, vol. 58, no. 2, pp. 91–127.

    Google Scholar 

  • Laberg, J.S. and Vorren, T.O., Late Weichselian Submarine Debris Flow Deposits on the Bear Island Trough Mouth Fan, Mar. Geol., 1995, vol. 127, pp. 45–72.

    Google Scholar 

  • Leont'ev, O.K. and Saf'yanov, G.A., Kan'ony pod morem (Canyons under the Sea), Moscow: Mysl, 1973.

    Google Scholar 

  • Li, M.Z. and Amos, C.L., Field Observations of Bedforms and Sediment Transport Thresholds of Fine Sand under Combined Waves and Currents, Mar. Geol., 1999, vol. 158, pp. 147–160.

    Google Scholar 

  • Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Mechanics of Liquid and Gas), Moscow: Nauka, 1987.

    Google Scholar 

  • Lowe, D.R., Grain Flaw and Grain Flow Deposits, J. Sed. Petrol., 1976, vol. 46, no. 1, pp. 188–199.

    Google Scholar 

  • Lowe, D.R., Sediment Gravity Flows: II. Depositional Models with Special Reference to the Deposit of High-Density Turbidity Currents, J. Sed. Petrol., 1982, vol. 52, no. 1, pp. 0279–0297.

    Google Scholar 

  • Major, J.J. and Iverson, R.M., Debris-Flow Deposition: Effects of Pore-Fluid Pressure and Friction Concentrated at Flow Margins, Geol. Soc. Am. Bull., 1999, vol. 111, no. 10, pp. 1424–1434.

    Google Scholar 

  • Makse, H.A., Havlin, S., King, P.R., and Stanley, H.E., Spontaneous Stratification in Granular Mixtures, Nature (London), 1997, vol. 386, pp. 379–382.

    Google Scholar 

  • Miall, A.D., In Defense of Facies Classifications and Models, J. Sed. Res., 1999, vol. 69, no. 1, pp. 2–5.

    Google Scholar 

  • Mohrig, D., Whipple, K.X., Hondzo, M., Ellis, C., and Parker, G., Hydroplaning of Subaqueous Debris Flows, Geol. Soc. Am. Bull., 1998, vol. 110, no. 3, pp. 387–394.

    Google Scholar 

  • Mohrig, D., Elverhoi, A., and Parker, G., Experiments on the Relative Mobility of Muddy Subaqueous and Subaerial Debris Flows, and Their Capacity to Remobilize Antecedent Deposits, Mar. Geol., 1999, vol. 154, pp. 117–129.

    Google Scholar 

  • Mulder, T. and Cochonat, P., Classification of Mass Movements, J. Sed. Res., 1996, vol. 166, no. 1, pp. 43–57.

    Google Scholar 

  • Nittrouer, C., STRATAFORM: Overview of Its Design and Synthesis of Its Results, Mar. Geol., 1999, vol. 154, pp. 3–12.

    Google Scholar 

  • Ogawa, S., Multitemperature Theory of Granular Material, Proc. US-Jpn. Seminar on Contin.-Mech. and Stat. Approaches Mech. Granular Mater., 1978, pp. 208-217.

  • Okurra, Y., Kitahara, H., and Sammori, T., Fluidization in Dry Landslides, Eng. Geol., vol. 56, pp. 347–360.

  • Pal'mov, V.A., Description of the High-Frequency Vibration of Complicated Dynamic Systems by Methods of the Theory of Conductivity, Izbrannye problemy prikladnoi mekhaniki: Sbornik, posvyashchennyi 60-letiyu akad. V.N. Chelomeya (Selected Problems of Applied Mechanics: Collection Devoted to the 60th Birthday of Academician V.N. Chelomey), Moscow: VINITI, 1974, pp. 535–542.

    Google Scholar 

  • Pervozvanskii, A.A., The Friction: A Familiar but Mysterious Force, Soros. Obrazov. Zh., 1998, no. 2, pp. 129-134.

  • Poliakov, A.S., Dynamics of Processes of the Late Quaternary Sedimentation on the Northeastern Margin of the Black Sea, Vestn. Mosk. Gos. Univ., Ser. 4: Geol., 1997, no. 6, pp. 21-32.

  • Postma, G., Classification for Sediment Gravity-Flow Deposits Based on Flow Conditions during Sedimentation, Geology, 1986, vol. 14, pp. 291–294.

    Google Scholar 

  • Pratson, L.F. and Coarly, B.J., A Model for the Headward Erosion of Submarine Canyons Induced by Downslope-Eroding Sediment Flows, Geol. Soc. Am. Bull., 1996, vol. 108, no. 2, pp. 225–234.

    Google Scholar 

  • Pykhov, N.V., Gravitational Displacements of Sedimentary Masses on the Ocean Floor, Litodinamika, litologiya i geomorfologiya shel'fa (Lithodynamics, Lithology, and Geomorphology of the Shelf), Moscow, 1976, pp. 7-36.

  • Reineck, G.E. and Singh, J.B., Depositional Sedimentary Environments, Berlin: Springer, 1975. Translated under the title Obstanovki terrigennogo osadkonakopleniya (s rassmotreniem terrigennykh klastogennykh osadkov), Moscow: Nedra, 1981.

    Google Scholar 

  • Romanovskii, S.I., Fizicheskaya sedimentologiya (Physical Sedimentology), Leningrad: Nedra, 1988.

    Google Scholar 

  • Rossiiskii, K.I. and Debol'skii, V.K., Rechnye nanosy (River Drift), Moscow: Nauka, 1980.

    Google Scholar 

  • Saf'yanov, G.A., Beregovaya zona okeana v XX veke (Coastal Zone of the Ocean in XX Century), Moscow: Mysl', 1978.

    Google Scholar 

  • Schwab, W.C., Lee, H.J., and Tvichell, D.C., Locat J., Nelson C.H., McArthur W., Kenyon N.H., Sediment Mass-Flow Processes on a Depositional Lobe Outer Mississippi Fan, J. Sed. Res., 1996, vol. 66, no. 5, pp. 916–927.

    Google Scholar 

  • Sedimentary Environments and Facies, Reading, H.G., Ed., Oxford: Blackwell, 1986. Translated under the title Obstanovki osadkonakopleniya i fatsii, Moscow: Mir, 1990, vol. 1.

    Google Scholar 

  • Shanmugam, G., High-Density Turbidity Currents: Are They Sandy Debris Flows?, J. Sed. Res., 1996, vol. 66, no. 1, pp. 2–10.

    Google Scholar 

  • Shanmugam, G. and Moiola, R.J., Reinterpretation of Depositional Processes in Classic Flysch Sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: Reply, Am. Assoc. Petr. Geol. Bull., 1997, vol. 81, no. 3, pp. 476–491.

    Google Scholar 

  • Shardanova, T.A. and Solov'eva, N.A., Metodicheskoe rukovodstvo po geneticheskomu analizu drevnikh morskikh otlozhenii (Methodical Handbook on the Genetic Analysis of Ancient Marine Sediments), Moscow: Mosk. Gos. Univ., 1992.

    Google Scholar 

  • Soulsby, R.L., Salkield, A.P., Haine, R.H., and Wainwright, B., Observations of the Turbulent Fluxes of Suspended Sand Near the Sea Bed, Transport of Suspended Solids in Open Channels, Rotterdam: Balkema, 1986, pp. 295–324.

    Google Scholar 

  • Spicer, K.R., Costa, J.E., and Placzek, G., Measuring Flood Discharge in Instable Stream Channels Using Ground-Penetrating Radar, Geology, 1997, vol. 25, no. 5, pp. 423–426.

    Google Scholar 

  • Straub, S., Self-Organization in Rapid Flow of Granular Material: Evidence for a Major Flow Mechanism, Berlin. Geol. Rundsch, 1996, vol. 85, pp. 85–91.

    Google Scholar 

  • Timofeev, P.P., Geologiya i fatsii yurskoi uglenosnoi formatsii Yuzhnoi Sibiri (Geology and Facies of of the Jurassic Coal-Bearing Formation of Southern Siberia), Moscow: Nauka, 1969.

    Google Scholar 

  • Trubetskoi, D.I., Turbulence and Determinated Chaos, Soros. Obrazov. Zh., 1998, no. 1, pp. 77-83.

  • Voznesenskii, E.A., Dinamicheskaya neustoichivost' gruntov (Dynamic Instability of Soils), Moscow: Editorial URSS, 1999.

    Google Scholar 

  • Yapaskurt, O.V., Rostovtseva, Yu.V., and Solov'eva, N.A., Sorokin V.M., Shardanova T.A. Issledovanie osadochnykh gornykh porod pri sostavlenii sredne-i melkomasshtabnykh kart novogo pokoleniya (The Study of Sedimentary Rocks in Compiling Medium-and Small-Scale Maps of New Generation), Moscow: Mosk. Gos. Univ., 1998.

    Google Scholar 

  • Znamenskaya, N.S., Gidravlicheskoe modelirovanie ruslovykh protsessov (Hydraulic Modeling of Channel Processes), Petersburg: Gidrometeoizdat, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poliakov, A.S. Properties of Granular Media and Transportation Mechanism of Subaqueous Debris Flows. Lithology and Mineral Resources 37, 25–39 (2002). https://doi.org/10.1023/A:1013631421289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013631421289

Keywords

Navigation