Alvarez, L., Esclarín, J., Lefébure, M., and Sánchez, J. 1999. A PDE model for computing the optical flow. In Proc. XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Sept. 21–24, 1999, pp. 1349–1356.
Alvarez, L., Weickert, J., and Sánchez, J. 2000. Reliable estimation of dense optical flow fields with large displacements. Int. J. Comput. Vision, 39:41–56.
Google Scholar
Anandan, P. 1989. A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vision, 2:283–310.
Google Scholar
Aubert, G., Deriche, R., and Kornprobst, P. 1999. Computing optical flow via variational techniques. SIAM J. Appl. Math, 60:156–182.
Google Scholar
Barron, J.L., Fleet, D.J., and Beauchemin, S.S. 1994. Performance of optical flow techniques. Int. J. Comput. Vision, 12:43–77.
Google Scholar
Bertero, M., Poggio, T.A., and Torre, V. 1988. Ill-posed problems in early vision. Proc. IEEE, 76:869–889.
Google Scholar
Black, M.J. and Anandan, P. 1991. Robust dynamic motion estimation over time. In Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, CVPR ‘91, Maui, June 3–6, 1991, IEEE Computer Society Press: Los Alamitos, pp. 292–302.
Google Scholar
Black, M.J., and Anandan, P. 1996. The robust estimation of multiple motions: Parametric and piecewise smooth flow fields. Computer Vision and Image Understanding, 63:75–104.
Article
Google Scholar
Blake, A. and Zisserman, A. 1987.Visual Reconstruction. MIT Press: Cambridge (Mass.).
Google Scholar
Blanc-Féraud, L., Barlaud, M., and Gaidon, T. 1993. Motion estimation involving discontinuities in a multiresolution scheme. Optical Engineering, 32(7):1475–1482.
Google Scholar
Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M. 1994. Two deterministic half-quadratic regularization algorithms for computed imaging. In Proc. IEEE Int. Conf. Image Processing, ICIP-94, Austin, Nov. 13–16, 1994, Vol. 2, IEEE Computer Society Press: Los Alamitos, pp. 168–172.
Google Scholar
Cohen, I. 1993. Nonlinear variational method for optical flow computation. In Proc. Eighth Scandinavian Conf. on Image Analysis, SCIA ‘93, Tromsø, May 25–28, 1993, Vol. 1, pp. 523–530.
Google Scholar
Courant, R. and Hilbert, D. 1953. Methods of Mathematical Physics, Vol. 1. Interscience: New York.
Google Scholar
Deriche, R., Kornprobst, P., and Aubert, G. 1995. Optical-flow estimation while preserving its discontinuities: A variational approach. In Proc. Second Asian Conf. Computer Vision, ACCV ‘95, Singapore, Dec. 5–8, 1995, Vol. 2, pp. 290–295.
Google Scholar
Di Zenzo, S. 1986. A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing, 33:116–125.
Google Scholar
Elsgolc, L.E. 1961. Calculus of Variations. Pergamon: Oxford.
Google Scholar
Enkelmann, W. 1988. Investigation of multigrid algorithms for the estimation of optical flow fields in image sequences. Computer Vision, Graphics and Image Processing, 43:150–177.
Google Scholar
Finkbeiner, D.T. 1966. Introduction to Matrices and Linear Transformations. Freeman: San Francisco.
Google Scholar
Fleet, D.J. and Jepson, A.D. 1990. Computation of component image velocity from local phase information. Int. J. Comput. Vision, 5:77–104.
Google Scholar
Förstner, W. and Gülch, E. 1987. A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proc. ISPRS Intercommission Conf. on Fast Processing of Photogrammetric Data, Interlaken, June 2–4, 1987, pp. 281–305.
Galvin, B., McCane, B., Novins, K., Mason, D., and Mills, S. 1998. Recovering motion fields: An analysis of eight optical flow algorithms. In Proc. 1998 British Machine Vision Conference, BMVC '98, Southampton, Sept. 14–17, 1998.
Gerig, G., Kübler, O., Kikinis, R., and Jolesz, F.A. 1992. Nonlinear anisotropic filtering of MRI data. IEEE Trans. Medical Imaging, 11:221–232.
Google Scholar
ter Haar Romeny, B., Florack, L., Koenderink, J., and Viergever, M. (Eds.). 1997. Scale-space Theory in Computer Vision. Springer: Berlin. Lecture Notes in Computer Science, Vol. 1252.
Google Scholar
Heitz, F. and Bouthemy, P. 1993. Multimodal estimation of discontinuous optical flow using Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell., 15:1217–1232.
Google Scholar
Hinterberger, W. 1999. Generierung eines Films zwischen zwei Bildern mit Hilfe des optischen Flusses. M.Sc. thesis, Industrial Mathematics Institute, University of Linz, Austria.
Google Scholar
Horn, B. and Schunck, B. 1981. Determining optical flow. Artificial Intelligence, 17:185–203.
Article
Google Scholar
Kimmel, R., Malladi, R., and Sochen, N. 2000. Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images. Int. J. Comput. Vision, 39:111–129.
Google Scholar
Koenderink, J.J. 1975. Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta, 22:773–791.
Google Scholar
Kreyszig, E. 1959. Differential Geometry. University of Toronto Press: Toronto.
Google Scholar
Kumar, A., Tannenbaum, A.R., and Balas, G.J. 1996. Optic flow: A curve evolution approach. IEEE Trans. Image Proc., 5:598–610.
Google Scholar
van Laarhoven, P.J.M. and Aarts, E.H.L. 1988. Simulated Annealing: Theory and Applications. Reidel: Dordrecht.
Google Scholar
Mémin, E. and Pérez, P. 1998. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Proc, 7:703–719.
Article
Google Scholar
Mitiche, A. and Bouthemy, P. 1996. Computation and analysis of image motion: A synopsis of current problems and methods. Int. J. Comput. Vision, 19:29–55.
Google Scholar
Murray, D.W. and Buxton, B.F. 1987. Scene segmentation from visual motion using global optimization. IEEE Trans. Pattern Anal. Mach. Intell., 9:220–228.
Google Scholar
Nagel, H.H. 1983. Constraints for the estimation of displacement vector fields from image sequences. In Proc. Eighth Int. Joint Conf. on Artificial Intelligence, IJCAI ‘83, Karlsruhe, Aug. 8–12, 1983, pp. 945–951.
Nagel, H.-H. 1987. On the estimation of optical flow: Relations between different approaches and some new results. Artificial Intelligence, 33:299–324.
Article
Google Scholar
Nagel, H.-H. 1990. Extending the ‘oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow. In '90, O. Faugeras (Ed.). Lecture Notes in Computer Science, Vol. 427. Springer: Berlin, pp. 139–148.
Google Scholar
Nagel, H.-H. and Enkelmann, W. 1986. An investigation of smoothness constraints for the estimation of displacement vector fields from images sequences. IEEE Trans. Pattern Anal. Mach. Intell., 8:565–593.
Google Scholar
Nesi, P. 1993. Variational approach to optical flow estimation managing discontinuities. Image and Vision Computing, 11:419–439.
Google Scholar
Nielsen, M., Johansen, P., Olsen, O.F., and Weickert, J. (Eds.). 1999. Scale-Space Theories in Computer Vision. Springer: Berlin. Lecture Notes in Computer Science, Vol. 1682.
Google Scholar
Otte, M. and Nagel, H.-H. 1995. Estimation of optical flow based on higher-order spatiotemporal derivatives in interlaced and noninterlaced image sequences. Artificial Intelligence, 78:5–43.
Google Scholar
Proesmans, M., Van Gool, L., Pauwels, E., and Oosterlinck, A. 1994.Determination of optical flow and its discontinuities using nonlinear diffusion. In '94, J.-O. Eklundh (Ed.). Springer: Berlin, pp. 295–304. Lecture Notes in Computer Science, Vol. 801.
Google Scholar
Schnörr, C. 1991. Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int. J. Comput. Vision, 6:25–38.
Google Scholar
Schnörr, C. 1993. On functionals with greyvalue-controlled smoothness terms for determining optical flow. IEEE Trans. Pattern Anal. Mach. Intell., 15:1074–1079.
Google Scholar
Schnörr, C. 1994. Segmentation of visual motion by minimizing convex non-quadratic functionals. In Proc. 12th Int. Conf. Pattern Recognition, ICPR 12, Jerusalem, Oct. 9–13, 1994, Vol. A, IEEE Computer Society Press: Los Alamitos, pp. 661–663.
Google Scholar
Schnörr, C. 1996. Convex variational segmentation of multi-channel images. In '96: Images,Wavelets and PDEs, M.-O. Berger, R. Deriche, I. Herlin, J. Jaffré, and J.-M. Morel (Eds.). Springer: London, pp. 201–207. Lecture Notes in Control and Information Sciences, Vol. 219.
Google Scholar
Schnörr, C. and Sprengel, R. 1994. A nonlinear regularization approach to early vision. Biol. Cybernetics, 72:141–149.
Google Scholar
Schnörr, C., Sprengel, R., and Neumann, B. 1996. A variational approach to the design of early vision algorithms. Computing, Suppl., 11:149–165.
Google Scholar
Schnörr, C. and Weickert, J. 2000. Variational motion computation: Theoretical framework, problems and perspectives. In Mustererkennung 2000, G. Sommer, N. Krüger, and C. Perwass (Eds.). Springer: Berlin, pp. 476–487.
Google Scholar
Snyder, M.A. 1991. On the mathematical foundations of smoothness constraints for the determination of optical flow and for surface reconstruction. IEEE Trans. Pattern Anal. Mach. Intell., 13:1105–1114.
Google Scholar
Sporring, J., Nielsen, M., Florack, L., and Johansen, P. (Eds.). 1997.Gaussian Scale-Space Theory, Kluwer: Dordrecht.
Google Scholar
Stevenson, R.L., Schmitz, B.E., and Delp, E.J. 1994. Discontinuity preserving regularization of inverse visual problems. IEEE Trans. Systems, Man and Cybernetics, 24:455–469.
Google Scholar
Stiller, C. and Konrad, J. 1999. Estimating motion in image sequences. IEEE Signal Proc. Magazine, 16:70–91.
Google Scholar
Weber, J. and Malik, J. 1995. Robust computation of optical flow in a multi-scale differential framework. Int. J. Comput. Vision, 14:67–81.
Google Scholar
Weickert, J. 1994. Scale-space properties of nonlinear diffusion filtering with a diffusion tensor. Report No. 110, Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany.
Weickert, J. 1998a. Anisotropic Diffusion in Image Processing. Teubner: Stuttgart.
Google Scholar
Weickert, J. 1998b. On discontinuity-preserving optic flow. In Proc. Computer Vision and Mobile Robotics Workshop, CVMR '98, Santorini, Sept. 17–18, 1998, S. Orphanoudakis, P. Trahanias, J. Crowley, and N. Katevas (Eds.). pp. 115–122.
Weickert, J. 1999. Coherence-enhancing diffusion of colour images. Image and Vision Computing, 17:199–210.
Google Scholar
Weickert, J. and Schnörr, C. 2001. Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imag. Vision, 14:245–255.
Google Scholar
Whitaker, R. and Gerig, G. 1994.Vector-valued diffusion. Geometry-Driven Diffusion in ComputerVision, B.M. ter Haar Romeny (Ed.). Kluwer: Dordrecht, pp. 93–134.
Google Scholar
Zeidler, E. 1990. Nonlinear Functional Analysis and its Applications, Vol. IIb. Springer: Berlin.
Google Scholar
Ziemer, W.P. 1989. Weakly Differentiable Functions. Springer: New York.
Google Scholar