Skip to main content
Log in

The Use of DNS to Define Stress Producing Events for Turbulent Flow over a Smooth Wall

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Over the past 15 years direct numerical simulations (DNS) of turbulent flow and particle image velocimetry (PIV) have provided the opportunity to obtain information about a turbulent velocity field simultaneously at a large number of locations. This paper gives a personal viewpoint of how these techniques are providing new insights about the Reynolds stress producing structures in turbulence generated by flow over a smooth boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard, P.S., Thomas, J.M. and Handler, R.A., Vortex dimensions and the production of Reynolds stress. J. Fluid Mech. 253 (1993) 385–419.

    Article  MATH  ADS  Google Scholar 

  2. Bogard, D.G. and Tiederman, W.G., Burst detection with single-point velocity measurements. J. Fluid Mech. 162 (1986) 389–413.

    Article  ADS  Google Scholar 

  3. Brooke, J.W. and Hanratty, T.J., Origin of turbulence-producing eddies in a channel flow. Phys. Fluids A 5 (1993) 1011–1022.

    Article  MATH  ADS  Google Scholar 

  4. Chapman, D.R. and Kuhn, G.D., Tow-component Navier-Stokes computational model of viscous sublayer turbulence. In: Proceedings AAIA 5th CFD Conference, Palo Alto, CA. AIAA, New York (1981) AIAA Paper 81–1024.

    Google Scholar 

  5. Chong, M.S., Perry, A.E. and Cantwell, B.J., A general classification of three-dimensional flow fields. Phys. Fluids A 2 (1996) 765.

    Article  MathSciNet  ADS  Google Scholar 

  6. Hanratty, T.J. and Papavassiliou, D.V., The role of wall vortices in producing turbulence. In: Panton, R.L. (ed.), Self-Sustaining Mechanism of Wall Turbulence. Computational Mechanics Publications, Southhampton (1997) pp. 83–108.

    Google Scholar 

  7. Heist, D.K., Hanratty, T.J. and Na, Y., Observation of streamwise vortices by rotation of arch vortices. Phys. Fluids A 12 (2000) 2965–2975.

    Article  ADS  Google Scholar 

  8. Kline, S.J., Reynolds, W.C., Schraub, F.A. and Runstadler, P.W., The structure of turbulent boundary layers. J. Fluid Mech. 30 (1967) 741–773.

    Article  ADS  Google Scholar 

  9. Kline, S.J. and Afgan, N.H., Near Wall Turbulence. Hemisphere, Washington D. C. (1988).

    Google Scholar 

  10. Liu, Z.C., Adrian, R.J. and Hanratty, T.J., Large-scale modes of turbulent channel flow: Transport and structures. TAM Report No. 929, UILU-ENG-2000–6004, ISSN 0073–5264, Theoretical and Applied Mechanics, University of Illinois, Urbana-Champaign (2000).

    Google Scholar 

  11. Lu, S.S. and Willmarth, W.W., Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60 (1973) 481–511.

    Article  ADS  Google Scholar 

  12. Luchik, T.S. and Tiederman, W.G., Timescale and structure of ejections and burst in turbulent channel flows. J. Fluid Mech. 174 (1987) 529–552.

    Article  ADS  Google Scholar 

  13. Lyons, S.L., Nikolaides, C. and Hanratty, T.J., The size of turbulent eddies close to a wall. AIChE J. 34 (1988) 938–945.

    Article  Google Scholar 

  14. Lyons, S.L., Hanratty, T.J. and McLaughlin, J.B., Turbulence producing eddies in the viscous wall layer. AIChE J. 35 (1991) 1962–1974.

    Article  Google Scholar 

  15. Lyons, S.L., Hanratty, T.J. and McLaughlin, J.B., Large-scale computer simulation of fully developed turbulent channel flow with heat transfer. Internat. J. Numer. Methods Fluids 13 (1991) 999–1028.

    Article  MATH  ADS  Google Scholar 

  16. Nikolaides, C., Lau, K.K. and Hanratty, T.J., A study of the spanwise structures of coherent eddies in the viscous wall region. J. Fluid Mech. 130 (1983) 91–108.

    Article  ADS  Google Scholar 

  17. Offen, G.R. and Kline, S.J., A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 70 (1973) 209–228.

    Article  ADS  Google Scholar 

  18. Panton, E.L. (ed.), Self-Sustaining Mechanism of Wall Turbulence. Computational Mechanics Publications, Southhampton (1997).

    Google Scholar 

  19. Townsend, A.A., The Structure of Turbulent Shear Flow, 1st edn. Cambridge University Press, Cambridge (1956).

    Google Scholar 

  20. Townsend, A.A., The turbulent boundary layer. In: Görtler, H. (ed.), Boundary Layer Research, IUTAM Symposium, August 26–29, 1957. Springer-Verlag, Berlin (1958) pp. 1–15.

    Google Scholar 

  21. Townsend, A.A., The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976).

    Google Scholar 

  22. Wallace, J.M., Brodkey, R.S. and Eckelmann, H., Pattern recognized structures in bounded turbulent shear flows. J. Fluid Mech. 83 (1977) 673–693.

    Article  ADS  Google Scholar 

  23. Zhou, J. Meinhart, C.D., Balachandar, S. and Adrian, R.J., Formation of coherent packets in wall turbulence. In: Panton, R.L. (ed.), Self-Sustaining Mechanism of Wall Turbulence. Computational Mechanics Publications, Southhampton (1997) pp. 109–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, Y., Hanratty, T.J. & Liu, ZC. The Use of DNS to Define Stress Producing Events for Turbulent Flow over a Smooth Wall. Flow, Turbulence and Combustion 66, 495–512 (2001). https://doi.org/10.1023/A:1013562531776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013562531776

Navigation