Skip to main content
Log in

Mobility and Diffusion in Granular Fluids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A recent analysis of Brownian motion in granular media undergoing homogeneous cooling implies a violation of the Einstein relation between the diffusion and mobility coefficients. It is shown here that this violation occurs more generally. The usual method of linear response to an external force is generalized for inelastic collisions, where the reference state at zero applied force is the homogeneous cooling state. Formally exact Green–Kubo type expressions are compared for the mobility and diffusion coefficients of an impurity particle in a granular fluid. The results show that the absence of the Gibbs state, the cooling of the reference state, and the occurrence of different kinetic temperatures for the particle and surrounding fluid are responsible for a violation of the Einstein relation. A quantitative description of the effect over a wide range of densities and restitution coefficients is provided by an approximate evaluation of the associated response functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. Brey, J. W. Dufty, C.-S. Kim, and A. Santos, Phys. Rev. E 58:4638 (1998).

    Google Scholar 

  2. V. Garzó and J. W. Dufty, Phys. Rev. E 59:5895 (1999).

    Google Scholar 

  3. J. J. Brey, J. W. Dufty, and A. Santos, J. Statist. Phys. 97:2811 (1999).

    Google Scholar 

  4. J. J. Brey, M. Ruiz-Montero, R. Garcí-Rojo, and J. Dufty, Phys. Rev. E 60:7174 (1999).

    Google Scholar 

  5. J. W. Dufty, J. Phys.: Condens. Matter 12:47 (2000); J. W. Dufty, J. J. Brey, and J. Lutsko (unpublished).

    Google Scholar 

  6. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87:1051 (1997).

    Google Scholar 

  7. Similar self-diffusion results based on the Boltzmann equation have been obtained by J. J. Brey, M. J. Ruiz-Montero, D. Cubero, and R. Garcí-Rojo, Phys. Fluids 12:876 (2000).

    Google Scholar 

  8. J. Lutsko (unpublished).

  9. J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics(Prentice–Hall, New Jersey, 1989).

    Google Scholar 

  10. V. Garzó and J. W. Dufty, Phys. Rev. E 60:5706 (1999).

    Google Scholar 

  11. V. Garzó and J. W. Dufty, Phys. Fluids, submitted for publication.

  12. P. A. Martin and J. Piasecki, Europhys. Lett. 46:613 (1999).

    Google Scholar 

  13. N. Brilliantov and T. Pöschel, Phys. Rev. E 61:1716 (2000)

    Google Scholar 

  14. E. W. Grundke and D. Henderson, Mol. Phys. 24:269 (1972); L. L. Lee and D. Levesque, ibid. 26:1351 (1973).

    Google Scholar 

  15. T. P. C. van Noije and M. H. Ernst, Granular Matter 1:57 (1998).

    Google Scholar 

  16. A. Santos and J. W. Dufty, Phys. Rev. Lett. 86:4823 (2001) and cond-mat/0102087.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufty, J.W., Garzó, V. Mobility and Diffusion in Granular Fluids. Journal of Statistical Physics 105, 723–744 (2001). https://doi.org/10.1023/A:1013545908301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013545908301

Navigation