Skip to main content
Log in

The Modeling of Variable Density Turbulent Flows. A review of first-order closure schemes

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The paper is intended as a review of where eddy-viscosity turbulence models have reached in accounting for the several distinct effects of variable density and high-Mach number behaviour on the development of turbulent shear flows. Three generations of ``compressible models'' are depicted: a first one based on variable density and compressible adjustments of ``incompressible'' schemes, a second one in which it is presumed that explicit dilatational terms can account for variable density and compressibility effects, and a third one, where such effects are taken implicitly in association with structural changes of the turbulent field. The latter are hardly tractable when using first-order closure schemes, but more reliable than the former in accounting for most observed variable density and compressibility effects in turbulent shear flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, P.T., Zumwalt, G.W. and Fila, L.J., A numerical method and an extension of the Korst jet mixing theory for multispecies jet mixing. In: 6th Aerospace Science Meeting. AIAA, New York (1968) AIAA Paper No. 68–112.

    Google Scholar 

  2. Chambres, O., Barre, S. and Bonnet, J.P., Balance of kinetic energy in supersonic mixing layer compared to subsonic mixing layer and subsonic jets with variable density. In: Fulachier, L., Lumley, J.L. and Anselmet, F. (eds), IUTAM Symposium on Variable Density Low Speed Turbulent Flows, Marseille. Kluwer Academic Publishers, Dordrecht (1996) pp. 303–308.

    Google Scholar 

  3. Chassaing, P., Mélange turbulent de gaz inertes dans un jet de tube libre. Thèse Doc. Sciences, Inst. Nat. Poly. de Toulouse, 42 (1979).

  4. Chassaing, P., Une alternative à la formulation des équations du mouvement turbulent d'un fluide à masse volumique variable. J. Méc. Théo. Appl. 4(3) (1985) 375–389.

    MATH  MathSciNet  Google Scholar 

  5. Chassaing, P., Some problems on single point modeling of turbulent, low-speed, variable density fluid motions. In: Fulachier, L., Lumley, J. L. and Anselmet, F. (eds), IUTAM Symposium on Variable Density Low Speed Turbulent Flows, Marseille. Kluwer Academic Publishers, Dordrecht (1996) pp. 65–84.

    Google Scholar 

  6. Chen, C.J. and Chen, C.H., On the prediction and unified correlation for decay of vertical buoyant jets. ASME, J. Heat Transfer 101 (1979) 532–537.

    ADS  Google Scholar 

  7. Cousteix, J. and Aupoix, B., Turbulence models for compressible flows. In: Three-Dimensional Supersonic and Hypersonic Flows Including Separation, AGARD-FDP-VKI Special course (1989).

  8. Délery, J.M. and Le Diuzet, P., Décollement résultant d'une interaction onde de choc-couche limite turbulente. ONERA T.P. 146 (1979).

  9. Driscoll, J.F., Scheffer, R.W. and Dibble, R.W., Mass fluxes p'u' and p'u' measured in a turbulent nonpremixed flame. In: Proceedings Nineteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1982) pp. 477–485.

    Google Scholar 

  10. Durbin, P.A. and Zeman, O., Rapid distortion theory for homogeneous compressed turbulence with application to modelling. J. Fluid Mech. 242 (1992) 349–370.

    Article  MATH  ADS  Google Scholar 

  11. Dussauge, J.-P. and Quine, C., A second ordre closure for supersonic turbulent flows-Application to the supersonic mixing. In: The Physics of Compressible Turbulent Mixing. Princeton University Press, Princeton, NJ (1988) pp. 407–416.

    Google Scholar 

  12. Elliott, G.S. and Samimy, M., Compressibility effects in free shear layers. Phys. Fluids A 2(7) (1990) 1231–1240.

    Article  ADS  Google Scholar 

  13. Favre, A., Équations statistiques des gaz turbulents. C.R. Acad. Sci. Paris 246 (1958): Masse, quantité de mouvement, pp. 2576–2579; Énergie totale, énergie interne: pp. 2723–2725; Énergie cinétique, énergie cinétique du mouvement macroscopique, énergie cinétique de la turbulence: pp. 2839–2842; Enthalpie, entropie, température: pp. 3216–3219.

  14. Favre, A., Équations des gaz turbulents compressibles. I. Formes générales. J. de Méc. 4(3) (1965) 361–390.

    Google Scholar 

  15. Favre, A., Équations des gaz turbulents compressibles. II. Méthode des vitesses moyennes; méthode des vitessesmacroscopiques pondérées par la masse volumique. J. de Méc. 4(4) (1965) 391–421.

    Google Scholar 

  16. Favre, A., Équations statistiques aux fluctuations d'entropie, de concentration, de rotationnel dans les écoulements compressibles. C.R. Acd. Sci. Paris 273 (1971) 1289–1294.

    MATH  MathSciNet  Google Scholar 

  17. Favre, A., Équations statistiques des fluides turbulents compressibles. In: 5ème Cong. Can. de Méc. Appl., Fredericton. New Brunswick University (1975) pp. G3–G4.

  18. Favre, A., Équations statistiques des fluides à masse volumique variable en écoulements turbulents. In: 2èmes Jo. d'Etude Eclts. Turb. à masse volumique variable, Orléans (1992).

  19. Freund, J.B., Lele, S.K. and Moin, P., Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421 (2000) 229–267.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Goebel, S.G. and Dutton, J.C., Experimental study of compressible turbulent mixing layers. AIAA J. 29(4) (1991) 538–546.

    ADS  Google Scholar 

  21. Grasso, F. and Speziale, C.G., Supersonic flow computations by two-equation turbulence modeling. AIAA 89–1951–CP (1989).

  22. Guézengar, D., Guillard, H. and Dussauge, J.-P., Modeling dissipation equation in supersonic turbulent mixing layers with high-density gradients. AIAA J. 38(9) (2000) 1650–1655.

    ADS  Google Scholar 

  23. Ha Minh, H., Launder, B.E. and MacInnes, J., A new approach to the analysis of turbulent mixing in variable density flows. In: Proceedings 3rd Symposium on Turbulent Shear Flows, University of California, Davis (1981) pp. 19.19–19.25.

    Google Scholar 

  24. Ha Minh, H., Launder, B.E. and MacInnes, J., The turbulence modelling of variable density flows-A mixed-weighted decomposition. In: Bradbury, L.S.J., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds), Selected Papers from 3rd Symposium on Turbulent Shear Flows, University of California, Davis. Springer-Verlag, Berlin (1981) pp. 291–308

    Google Scholar 

  25. Ha Minh, H., Vandromme, D. and MacCormack, R.W., Computation of complex compressible turbulent flows. In: Preprints of the 1980–81 AFOSR-HTTM Stanford Conference, Complex Turbulent Flows-Comparison of computation and experiment, Vol. 1, Cases 8101, 8201 and 8612, Stanford University (1981).

  26. Ha Minh, H. and Vandromme, D., Modélisation de la turbulence en situations compressibles: les aspects physiques et leurs incidences sur la prédétermination numérique des écoulements. Congrès Ecoulements Compressibles, Poitiers (1986).

  27. Ha Minh, H., Rubesin, H.M.W., Vandromme, D. and Viegas, J.R., On the use of second order closure modelling for the prediction of turbulent boundary layers/shock wave interactions: Physical and numerical aspects. In: International Comp. Fluid Dynamics Symposium, Tokyo, 1985.

  28. Hamba, F., Effects of pressure fluctuations on turbulence growth in compressible homogeneous shear flow. Phys. Fluids 11(6) (1999) 1623–1635.

    Article  ADS  MATH  Google Scholar 

  29. Huang, P.G. and Coleman, G.N., Van Driest transformation and compressible wall-bounded flows. AIAA J. 32(10) (1994) 2110–2113.

    ADS  Google Scholar 

  30. Huang, P.G., Coleman, G.N. and Bradshaw, P., Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305 (1995) 185–218.

    Article  MATH  ADS  Google Scholar 

  31. Jamme, S., Étude de l'interaction entre une turbulence homogène isotrope et une onde de choc. Thèse No. 1510, I.N.P.T., Dépt. Méc. des Fluides de l'ENSICA (1998).

  32. Janicka, J. and Lumley, J. L., Second-order modeling in non-constant density flows. Report FDA-81–01, Cornell University (1980).

  33. Janicka, T. and Kollman,W., A two-variables formalism for the treatment of chemical reactions in turbulent H2–Air diffusion flames. In: Proceedings Seventeenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1979).

    Google Scholar 

  34. Jones, W.P., Models for turbulent flows with variable density and combustion. In: Kollman, W. (ed.), Prediction Methods for Turbulent Flows, Lecture Series 1979–2. Von Kármán Institute (1979).

  35. Jones, W.P. and Launder, B.E., The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Internat. J. Heat Mass Trans. 16 (1973) 1119–1130.

    Article  Google Scholar 

  36. Kent, J.H. and Bilger, R.W., The prediction of turbulent diffusion flame fields and nitric oxide formation. In: Proceedings Sixteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1977).

    Google Scholar 

  37. Lebret, Y., Vandromme, D. and Ha Minh, H., Structure and modelling in strongly sheared turbulent compressible flow. In: Eighth Symposium on Turbulent Shear Flows, Technical University Munich (1991) pp. 29–4–1–29–4–5.

    Google Scholar 

  38. Lejeune, C. and Kourta, A., Modeling extra-compressibility high speed turbulent flows. In: Eleventh Symposium on Turbulent Shear Flows, Grenoble (1997) pp. P 3–71; P 3–76.

  39. Lejeune, C., Kourta, A. and Chassaing, P., Modelling of high speed turbulent flows. In: 27th AIAA Fluid Dynamics Conference, New Orleans. AIAA, New York (1996) AIAA-96–2041.

    Google Scholar 

  40. Liou, W.W. and Shih, T.-H., On the basic equations for the second-order modeling of compressible turbulence. Tech. Mem. 105277 ICOMP-91–19, NASA (1991).

  41. Liou, W.W., Shih, T.-H. and Duncan, B.S., A multiple-scale model for compressible turbulent flows. Phys. Fluids 7(3) (1995) 658–666.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Lumley, J.L., Toward a turbulent constitutive relation. J. Fluid Mech. 41(2) (1970) 413–434.

    Article  ADS  Google Scholar 

  43. Ha Minh, H. and Vandromme, H.D., Etude numérique du comportement des contraintes de Reynolds dans une compression-détente supersonique. In: XXIème Coll. d'Aéro. Appl., Lille (1985).

  44. HaMinh, H. and Vandromme, H.D., Modelling of compressible turbulent flows: Present possibilities and perspectives. In: Délery, J. (ed.), IUTAMSymposium on Turbulent Shear Layer/Shock Wave Interaction, Palaiseau, France. Springer-Verlag, Berlin (1985) pp. 13–26.

    Google Scholar 

  45. Nichols, R.H., A two-equation model for compressible flows. AIAA J. (1990).

  46. Passot, T. and Pouquet, A., Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181 (1987) 441–466.

    Article  MATH  ADS  Google Scholar 

  47. Pouquet, A., Étude de la turbulence compressible. Contrat DRET-Rapport de synthèse final 92/1202A, Observatoire de la Côte d'Azur (1994).

  48. Purwanto, A., Modèles de turbulence en écoulement basse vitesse et forte inhomogénéité thermique. Contrat SNECMA-Rapport d'avancement IV, ENSICA (1994).

  49. Purwanto, A., Modélisation d'écoulements turbulent-basse vitesse à forte variation de masse volumique. Application aux schémas de fermeture k-∈. Thèse Méc. des fluides, I.N.P.T., ENSICA (1994).

  50. Rehm, R.G. and Baum, H.R., The equations of motions for thermally driven, buoyant flows. J. Res. Nat. Bur. Stand. 83(3) (1978) 297–308.

    MATH  Google Scholar 

  51. Rey, C., Écoulements turbulents compressibles et variables aléatoires centrées. In: 10ème Cong. Fran. de Méc., Paris (1991).

  52. Rey, C. and Rosant, J.M., Influence of density variations on small turbulent structures of temperature in strongly heated flows. In: Proceedings 9ème Conf. Int. sur le Transfert de Chaleur, 4–MC-10, Jerusalem (1990) pp. 405–409.

  53. Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. Roy. Soc. London, A 186 (1895) 123–164.

    MATH  ADS  Google Scholar 

  54. Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Papers on Mechanical and Physical Subjects II (1901) 535–577.

    Google Scholar 

  55. Ristorcelli, J.R., A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence. J. Fluid Mech. 347 (1997) 37–70.

    Article  MATH  ADS  Google Scholar 

  56. Rubesin, M.W., A one-equation model of turbulence for use with the compressible Navier-Stokes equations. NASA, TM X-73–128 (1976).

  57. Rubesin, M.W., Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. NASA Contractor Report 177556, MCAT Institute-NASA Ames, Moffett Field (1990).

    Google Scholar 

  58. Sarkar, S., The pressure-dilatation correlation in compressible flows. Phys. Fluids A 4(12) (1992) 2674–2682.

    Article  ADS  Google Scholar 

  59. Sarkar, S., The stabilizing effect of compressibility in turbulent shear flows. J. Fluid Mech. 282 (1995) 163–186.

    Article  MATH  ADS  Google Scholar 

  60. Sarkar, S. and Lakshmanan, B., Application of a Reynolds stress turbulence model to the compressible shear layer. AIAA J. 29(5) (1991) 743–749.

    Article  ADS  Google Scholar 

  61. Sarkar, S., Erlbacher, G. and Hussaini, M.Y., Compressible homogeneous shear: Simulation and modeling. In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J.H. (eds), Selected Papers from 8th International Symposium on Turbulent Shear Flows. Springer-Verlag, Berlin (1991) pp. 249–267.

    Google Scholar 

  62. Sarkar, S., Erlebacher, G., Hussaini, M.Y. and Kreiss, H.O., The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227 (1991) 473–493.

    Article  MATH  ADS  Google Scholar 

  63. Shih, T.-H., Lumley, J.L. and Janicka, J., Second-order modelling of a variable-density mixing layer. J. Fluid Mech. 180 (1987) 93–116.

    Article  MATH  ADS  Google Scholar 

  64. Shimomura, Y., Turbulent transport modeling in low Mach number flows. Phys. Fluids 11(10) (1999) 3136–3149.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Simone, A., Coleman, G.N. and Cambon, C., The effect of compressibility on turbulent shear flow: A rapid-distortion-theory and direct-numerical-simulation study. J. Fluid Mech. 330 (1997) 307–338.

    Article  MATH  ADS  Google Scholar 

  66. So, R.M.C., Zhu, J.Y., Ötügen, V. and Hwang, B.C., Some measurements in a binary gas jet. Exp. Fluids 9 (1990) 273–284.

    Article  Google Scholar 

  67. Taulbee, D. and VanOsdol, J., Modeling turbulent compressible flows: The mass fluctuating velocity and squared density. In: 19th Aerospace Sciences Meeting, Reno, NV, January. AIAA, New York (1991) AIAA-91–0524, pp. 1–9.

    Google Scholar 

  68. Vandromme, D. and Ha Minh, H., Physical analysis of turbulent boundary-layer/shock-wave interactions using second order closure predictions. In: Délery, J. (ed.), IUTAM Symposium on Turbulent shear Layer/Shock Wave Interaction, Palaiseau, France. Springer-Verlag, Berlin (1985).

    Google Scholar 

  69. Vandromme, D. and Ha Minh, H., Coupling of turbulence models with Reynolds averaged compressible Navier-Stokes equations. Application to shock interactions. In: Proceedings IMA/SMAI Conference, Reading, MA (1987).

  70. Vandromme, D. and Ha Minh, H., Turbulence modeling for compressible flows. In: Introduction to the Modeling of Turbulence, Lecture Series 1987–06. Von Kármán Institute (1987).

  71. Vreman, A.W., Sandham, N.D. and Luo, K.H., Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320 (1996) 235–258.

    Article  MATH  ADS  Google Scholar 

  72. Wilcox, D.C., Turbulence Modeling for CFD, second edition. DCW Industries (1994).

  73. Wilcox, D.C. and Rubesin, M.W., Progress in turbulence modeling for complex flow fields including effects of compressibility. NASA TP-1517 (1980).

  74. Yoshizawa, A., Liou, W.W., Yokoi, N. and Shih, T.-H., Modeling of compressible effects on the Reynolds stress using a Markovianized two-scale method. Phys. Fluids A 9(10) (1997) 3024–3036.

    Article  ADS  Google Scholar 

  75. Zeman, O., Dilatation dissipation: The concept and application in modeling compressible mixing layers. Phys. Fluids A 2(2) (1990) 178–188.

    Article  MathSciNet  ADS  Google Scholar 

  76. Zeman, O., On the decay of compressible isotropic turbulence. Phys. Fluids A 3(5) (1991) 951–955.

    Article  ADS  Google Scholar 

  77. Zeman, O. and Coleman, G.N., Compressible turbulence subjected to shear and rapid compression. In: Durst, F. Friedrich, R., Launder, B. E., Schmidt, F.W., Schumann, U. and Whitelaw, J.H. (eds), Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, T.S.F. 8, Munich, Germany. Springer-Verlag, Berlin (1991) pp. 283–296.

    Google Scholar 

  78. Zhu, J.Y., So, R.M.C. and Ötügen, M.V., Mass transfer in a binary gas jet. AIAA J. 27(8) (1989) 1132–1135.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chassaing, P. The Modeling of Variable Density Turbulent Flows. A review of first-order closure schemes. Flow, Turbulence and Combustion 66, 293–332 (2001). https://doi.org/10.1023/A:1013533322651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013533322651

Navigation