Skip to main content
Log in

Statistical Structure at the Wall of the High Reynolds Number Turbulent Boundary Layer

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The one and two-point statistical structure of very high Reynolds number turbulence in the surface layer near a rigid `wall' is analysed. The essential mechanisms for turbulent eddies impinging on the wall are studied using linearised rapid distortion theory, which show how the mean shear and blocking actions of the surface act first independently and then, over the life time of the eddy, interactively. Previous analytical results are reinterpreted and some new results are derived to show how the integral length scales, cross correlations and spectra of the different components of the turbulence are distorted depending on the form of the spectra of eddies above the surface layer and how they are related to motions of characteristic eddy structures near the surface. These results are applied to derive some quantitative and qualitative predictions in the surface layers (SL), where the eddies are affected by local shear dynamics, and in the `eddy surface layer' (ESL) where quasi independents loping elongated eddies interact directly with the wall, and where there is a large range of wave number within which the spectra of the horizontal velocity components are proportional to k −1. The longest eddies in the boundary layer occur near the wall. Field experiments agree with the theoretical model predictions for the quite different forms for the spectra, cospectra and cross correlations for the vertical and horizontal components of the velocity field. By showing that in SL the energy exchange between the large and small scale eddies is local(`staircase') energy cascade, whereas in ESL there is a direct nonlocal (`elevator-like')energy transfer to the small scales, it is shown why the thickness of the ESL increases over rougher surfaces and as the Reynolds number decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, R.J. Meinhart, C.D. and Tomkins, C.D., Vortex organisation in the outer region of the turbulent boundary layer. J. Fluid Mech. 422 (2000) 1–54.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Carlotti, P., General analysis of Fourier-type integrals with singular asymptotic expansions, in preparation.

  3. Carlotti, P., A study of two points properties of atmospheric turbulence using a high resolution LES. Bound. Layer Meteor. (2001) submitted.

  4. Carlotti, P., Distorted turbulence near rigid boundaries. Ph.D. Thesis, University of Cambridge (2001).

  5. Craft, T.J. and Launder, B. E., A Reynolds stress closure designed for complex geometries. Internat. J. Heat Fluid Flow 17 (1996) 245–254.

    Article  Google Scholar 

  6. Davenport, A.G., The spectra of horizontal gustiness near the ground in high winds. Quart. J. Roy. Meteorol. Soc. LXXXVII (1961) 194–211.

    Google Scholar 

  7. Durbin, P.A., A Reynolds stress model for near wall turbulence. J. Fluid Mech. 249 (1993) 465–498.

    Article  ADS  Google Scholar 

  8. Fuehrer, P.L. and Friehe, C.A., A physically-based turbulent velocity time series decomposition. Boundary Layer Meteorol. 90(2) (1999) 241–295.

    Article  ADS  Google Scholar 

  9. Godeferd, F., Cambon, C. and Scott, J., Report on the workshop ‘Two-point closures and their applications'. J. Fluid Mech. (2001) to appear.

  10. Högström, U., Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmospheric Sci. 47(16) (1990) 1949–1972.

    Article  Google Scholar 

  11. Högström, U. and Bergström, H., Organised turbulence structures in the near-neutral atmospheric surface layer. J. Atmospheric Sci. 53(17) (1996) 2452–2464.

    Article  Google Scholar 

  12. Högström, U. Hunt, J.C.R. and Smedman, A.S., Theory and measurements for two points turbulence statistics in the high Reynolds number neutral surface layer, in preparation.

  13. Hoxey, R.P. and Richards, P.J., Spectral characteristics of the atmospheric boundary layer near the ground. In: 1st UK Wind Engineering Conference, Cambridge (1992).

  14. Hunt, J.C.R., A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61(4) (1973) 625–706.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Hunt, J.C.R., Turbulence structure in thermal convection and shear-free boundary layers. J. Fluid Mech. 138 (1984) 161–184.

    Article  MATH  ADS  Google Scholar 

  16. Hunt, J.C.R., Dynamics and statistics of vortical eddies in turbulence. In: Hunt, J.C.R. and Vassilicos, J.C. (eds), Turbulence Structure and Vortex Dynamics. Cambridge University Press, Cambridge (2001).

    Google Scholar 

  17. Hunt, J.C.R. and Carruthers, D.J., Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212 (1990) 497–532.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Hunt, J.C.R. and Durbin, P.A., Perturbed vortical layers and shear sheltering. Fluid Dynam. Res. 24 (1999) 375–404.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hunt, J.C.R. and Graham, J.M.R., Free-stream turbulence near plane boundaries. J. Fluid Mech. 84 (1978) 209–235.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Hunt, J.C.R., Leibovich, S. and Richards, K.J., Turbulent shear flows over hills. Quart. J. Roy. Meteorol. Soc. 114 (1988) 1435–1470.

    Article  ADS  Google Scholar 

  21. Hunt, J.C.R., Moin, P., Lee, M., Moser, R.D., Spalart, P., Mansour, N.N., Kaimal, J.C. and Gaynor, E., Cross correlation and length scales in turbulent flows near surfaces, In: Fernholz, H.H. and Fiedler, H.E. (eds), Advances in Turbulence, Vol. 2. Springer-verlag, Berlin (1989) pp. 128–134.

    Google Scholar 

  22. Hunt, J.C.R. and Morrison, J.F., Eddy structure in turbulent boundary layers. Eur. J. Mech. B-Fluids 19 (2000) 673–694.

    MATH  Google Scholar 

  23. Kevlahan, N. and Hunt, J.C.R., Nonlinear interactions in turbulence with strong irrotational straining. J. Fluid Mech. 337 (1997) 333–364.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Kida, S. and Tanaka, M., Dynamics of vortical structures in homogeneous shear flows. J. Fluid Mech. 274 (1994) 43–68.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Kim, K.C. and Adrian, R.J., Very large-scale motion in the outer layer. Phys. Fluids 11(2) (1999) 417–422.

    Article  MathSciNet  ADS  Google Scholar 

  26. Lee, M.J. and Hunt, J.C.R., The structure of sheared turbulence near a plane boundary. In: Proceedings 7th Symposium on Turbulent Shear Flows, Stanford, CA (1989) pp. 8.1.1–8.1.6.

  27. Lee, M.J., Kim, J. and Moin, P., Structure of turbulence at high shear rate. J. Fluid Mech. 216 (1990) 561–583.

    Article  ADS  Google Scholar 

  28. Lin, Z.C., Adrian, R.J. and Hanratty, T.J., A study of streaky structures in turbulent channel flow with particle image velocimetry. In: Proceedings 8th International Symposium on Applied Laser Techniques to Fluid Mechanics, Lisbon (1996).

  29. Lumley, J.L., Yang, Z. and Shih, T.H., A length-scale equation. Flow, Turbulence, Combustion 63 (2000) 1–21.

    Article  MATH  Google Scholar 

  30. Magnaudet, J., The structure of high Reynolds number turbulence close to a flat shear free surface. Part II. Validity and implications of rapid distortion theory predictions. J. Fluid Mech. (2000) submitted.

  31. Mann, J., The spatial structure of neutral atmospheric surface layer turbulence. J. Fluid Mech. 273 (1994) 141–168.

    Article  MATH  ADS  Google Scholar 

  32. Marusic, I. and Perry, A.E., A wall-wake model for turbulence structure of boundary layer-Part 2: Further experimental support. J. Fluid Mech. 298 (1995) 389–407.

    Article  ADS  Google Scholar 

  33. Mason, P.A., Large eddy simulation: A critical review of the technique. Quart. J. Roy. Meteor. Soc. 120 (1994) 1–26.

    Article  ADS  Google Scholar 

  34. Maxey, M.R., Distortion of turbulence in flows with parallel streamlines. J. Fluid Mech. 124 (1982) 261–282.

    Article  MATH  ADS  Google Scholar 

  35. Moffatt, H.K., Interaction of turbulence with strong wind shear. In: Yaglom, A.M. and Tatarski, V.I. (eds), Proceedings of the URSI-IUGG International Colloquium on Atmospheric Turbulence and Radio Wave Propagation. Nauka, Moscow (1967) pp. 139–154.

  36. Panofsky, H.A., Tennekes, H., Lenschow, D.H. and Wyngaard, J.C., The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary Layer Meteorol. 11 (1977) 355–361.

    Article  ADS  Google Scholar 

  37. Parpais, S., Développement d'un modèle spectral pour la turbulence inhomogène; résolution par une méthode d'éléments finis. Ph.D. Thesis, Ecole Centrale de Lyon (1997).

  38. Perot, B. and Moin, P., Shear free turbulent boundary layers. Part 1. Physical insight into near wall turbulence. J. Fluid Mech. 295 (1995) 199–227.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Perry, A.E., Henbest, S. and Chong, M.S., A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165 (1986) 163–179.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Redelsperger, J.L., Mahé, F. and Carlotti, P., A simple and general approach enabling to subgrid models to be suitable both for surface layer and free stream turbulence. Boundary Layer Meteorol. (2000) submitted.

  41. Richards, P.J., Fong, S. and Hoxey, R.P., Anisotropic turbulence in the atmospheric surface layer. J. Wind Engrg. Indust. Aerodynam. 69–71 (1997) 903–913.

    Article  Google Scholar 

  42. Schmidt, H. and Schumman, U., Coherent structure of the convective boundary layer derived from large eddy simulations. J. Fluid Mech. 200 (1989) 511–562.

    Article  MATH  ADS  Google Scholar 

  43. Townsend, A.A., Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (1961) 97–120.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Townsend, A.A., The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, J., Carlotti, P. Statistical Structure at the Wall of the High Reynolds Number Turbulent Boundary Layer. Flow, Turbulence and Combustion 66, 453–475 (2001). https://doi.org/10.1023/A:1013519021030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013519021030

Navigation