Skip to main content
Log in

Looking for Turbulence Structures: A Numerical Exploration

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The purpose of this paper, dedicated to the memory of our friend Hieu Ha Minh, is to wander through the turbulence universe using deterministic computational tools based on large-eddy simulations (LES) in physical and spectral space. We first briefly recall the subgrid models used, then apply them to mixing layers, jets, separated flows (the backstep in particular, on which Hieu worked a lot) and boundary layers. The influence of compressibility will be also considered. These fine-grain LES allow us to decipher very nicely the intimate vortical structure of turbulence, and predict their statistics. Finally, we discuss of the applicability of these methods to industrial flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jimenez, J., Turbulence. Developments in Fluid Mechanics. A Collection for the Millennium. Cambridge University Press, Cambridge (2000).

    Google Scholar 

  2. Ha Minh, H., La modélisation statistique de la turbulence: Ses capacités et ses limitations. C.R. Acad. Sci. Paris, Ser. IIb 327 (1999) 343–358.

    MATH  Google Scholar 

  3. Métais, O. and Lesieur, M., Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech. 239 (1992) 157–194.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Germano, M., Piomelli, U., Moin, P. and Cabot, W., A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3 (1991) 1760–1765.

    Article  MATH  ADS  Google Scholar 

  5. Orszag, S.A., Statistical theory of turbulence. In: Balian, R. and Peube, J.L. (eds), Fluid Dynamics 1973, Les Houches Summer School of Theoretical Physics. Gordon and Breach, Newark, NJ (1977) pp. 237–374.

    Google Scholar 

  6. André, J.C. and Lesieur, M., Influence of helicity on high Reynolds number isotropic turbulence. J. Fluid Mech. 81 (1977) 187–207.

    Article  MATH  ADS  Google Scholar 

  7. Lesieur, M., Turbulence in Fluids, 3rd edn. Kluwer Academic Publishers, Dordrecht (1997).

    MATH  Google Scholar 

  8. Chollet, J.P. and Lesieur, M., Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38 (1981) 2747–2757.

    Article  ADS  Google Scholar 

  9. Kraichnan, R.H., Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 (1976) 1521–1536.

    Article  ADS  Google Scholar 

  10. Chollet, J.P. and Lesieur, M., Modélisation sous maille des flux de quantité de mouvement et de chaleur en turbulence tridimensionnelle. La Météorologie 29 (1982) 183–191.

    Google Scholar 

  11. Lesieur, M. and Rogallo, R., Large-eddy simulation of passive-scalar diffusion in isotropic turbulence. Phys. Fluids A 1 (1989) 718–722.

    Article  ADS  Google Scholar 

  12. Lesieur, M. and Métais, O., New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech. 28 (1996) 45–82.

    Article  ADS  Google Scholar 

  13. Garnier, E., Métais, O. and Lesieur, M., Instabilités primaire et secondaire dans un jet barocline. C.R. Acad. Sci. Paris, Sér. IIb 323 (1996) 161–168.

    MATH  Google Scholar 

  14. Garnier, E., Métais, O. and Lesieur, M., Synoptic and frontal-cyclone scale instabilities in baroclinic jet flows. J. Atmos. Sci. 55(8) (1997) 1316–1335.

    Article  ADS  Google Scholar 

  15. Ducros, F., Comte, P. and Lesieur, M., Large-eddy simulation of transition to turbulence in a boundary-layer developing spatially over a flat plate. J. Fluid Mech. 326 (1996) 1–36.

    Article  MATH  ADS  Google Scholar 

  16. Delcayre, F., Etude par simulation des grandes échelles d'un écoulement décollé: La marche descendante. Ph.D. Thesis, Grenoble University (1999).

  17. Comte, P., Silvestrini, J.H. and Bégou, P., Streamwise vortices in large-eddy simulations of mixing layers. Eur. J. Mech. B/Fluids 17 (1998) 615–637.

    Article  MATH  Google Scholar 

  18. Bernal, L.P. and Roshko, A., Streamwise vortex structure in plane mixing layer. J. Fluid Mech. 170 (1986) 499–525.

    Article  ADS  Google Scholar 

  19. Gonze, M.A., Simulation numérique des sillages en transition à la turbulence. Ph.D. Thesis, Grenoble University (1993).

  20. Franc, J.P., Michel, J.M. and Lesieur, M., Structures rotationnelles bi et tri-dimensionnelles dans un sillage cavitant. C.R. Acad. Sci. Paris, Sér. II 295 (1982) 773–776.

    ADS  Google Scholar 

  21. Kourta, A., Boisson, H.C., Chassaing, P. and Ha Minh, H., Non-linear interaction and the transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 181 (1987) 141–162.

    Article  ADS  Google Scholar 

  22. Urbin, G., Etude numérique par simulation des grandes échelles de la transition à la turbulence dans les jets. Ph.D. Thesis, Grenoble University (1998).

  23. Fouillet, Y., Contribution à l'étude par expérimentation numérique des écoulements cisaillés libres: Effets de compressibilité. Ph.D. Thesis, Grenoble University (1991).

  24. Michalke, A. and Hermann, G., On the inviscid instability of a circular jet with external flow. J. Fluid Mech. 114 (1982) 343–359.

    Article  MATH  ADS  Google Scholar 

  25. Broze, G. and Hussain, F., Transition to chaos in a forced jet: Intermittency, tangent bifurcations and hysteresis. J. Fluid Mech. 311 (1996) 37–71.

    Article  MathSciNet  ADS  Google Scholar 

  26. Le, H., Moin, P. and Kim, J., Direct-numerical simulation of turbulent flow over a backwardfacing step. J. Fluid Mech. 330 (1997) 349–374.

    Article  MATH  ADS  Google Scholar 

  27. Spalart, P., Direct simulation of a turbulent boundary layer up to = 1410. J. Fluid Mech. 187 (1988) 61–98.

    Article  MATH  ADS  Google Scholar 

  28. Ha Minh, H. and Kourta, A., Semi-deterministic turbulence modelling for flows dominated by strong organized structures. In: Suzuki, K., Durst, F., Kasagi, N. and Launder, B.E. (eds), Proceedings of the 9th Turbulent Shear Flows Symposium, Kyoto (1993) pp. 10–5–1–10–5–6.

  29. Rodi, W., Large-eddy simulations of the flow past bluff bodies: state-of-the art. JSME Internat. J. 41 (1998) 361–373.

    Google Scholar 

  30. Favre, A., Equations des gaz turbulents compressibles. J. Mécanique 4 (1965) 361.

    Google Scholar 

  31. Ng, L.L. and Erlebacher, G., Secondary instabilities in compressible boundary layers. Phys. Fluids A 4 (1992) 710.

    Article  MATH  ADS  Google Scholar 

  32. Bertolotti, P. and Herbert, T., Theoret. Comput. Fluids Dynam. 3 (1991) 117–124.

    Article  MATH  Google Scholar 

  33. Airiau, C., Stabilité linéaire et faiblement non linéaire d'une couche limite laminaire incompressible par un systeme d'équations parabolisé (PSE). Ph.D. Thesis, Toulouse University (1994).

  34. Briand, E., Dynamique des structures cohérentes en couche limite transitionnelle et turbulente étudiée par simulation des grandes échelles. Ph.D. Thesis, Grenoble University (1999).

  35. Cousteix, J., Turbulence et couche limite. Cepadues, Toulouse (1989).

    Google Scholar 

  36. Barenblatt, G., Scaling laws for fully-developed turbulent shear flows. Part I. Basic hypotheses and analysis. J. Fluid Mech. 248 (1993) 513–529.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Dubief, Y., Simulation des grandes échelles de la turbulence de la région de proche paroi et des écoulements décollés. Ph.D. Thesis, Grenoble University (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesieur, M. Looking for Turbulence Structures: A Numerical Exploration. Flow, Turbulence and Combustion 66, 477–494 (2001). https://doi.org/10.1023/A:1013506514937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013506514937

Navigation