Skip to main content
Log in

NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The function of a gene closely linked to nitrate assimilation loci from Chlamydomonas reinhardtii has been investigated. Gene expression analysis shows that its mRNA accumulation is modulated by light, carbon source and adaptation to light/dark cyclic conditions of growth. A full-length cDNA was isolated for the light-regulated transcript, and sequence characterization indicates that it encodes the NADP-malate dehydrogenase from C. reinhardtii (NADP-MDH;Cr). The primary structure of NADP-MDH;Cr is closely related to plant, mossfern and algal NADP-malate dehydrogenases, and shares structural determinants for chloroplast targeting, cofactor binding and catalysis. Sequence conservation extends to the carboxy end of the protein, where plant and mossfern enzymes have two cysteines and an acidic C-terminus with a critical role for regulation of NADP-MDH activity by the thioredoxin/ferredoxin system. Accordingly, incubation with DTT activates NADP-MDH enzyme in cell-free extracts from C. reinhardtii. Like NADP-malate dehydrogenases from two other green algae, the N-terminal extension of NADP-MDH;Cr lacks two thiol residues whose reduction constitutes the rate-limiting step in the activation reaction of plant enzymes. Homology-based 3D modelling of NADP-MDH;Cr, the first structure predicted for NADP-malate dehydrogenase from a lower eukaryote, evidences close positioning of two new cysteines in an accessible region of the protein surface. These results suggest that the algal enzyme has a different arrangement of regulatory disulfide bridges, which might involve the existence of new mechanisms that control functioning of the malate valve, the main system to export reducing power from the chloroplast of plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkemeyer, M., Scheibe, R. and Ocheretina, O. 1998. A novel, non-redox-regulated NAD-malate dehydrogenase from chloroplasts of Arabidopsis thaliana. J. Biol. Chem. 273: 27927–27933.

    Google Scholar 

  • Birktoff, J.J., Rhodes, G. and Banaszak, L.J. 1989. Refined crystal structure of cytoplasmic malate dehydrogenase at 2.5-Å resolution. Biochemistry 28: 6065–6081.

    Google Scholar 

  • Cheng, C.L., Acedo, G.N., Cristinsin, M. and Conkling, M.A. 1992. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA 89: 1861–1864.

    Google Scholar 

  • Crawford, N.M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859–868.

    Google Scholar 

  • Decottignies, P., Schmitter, J.M., Dutka, S., Jacquot, J.P. and Miginiac-Maslow, M. 1991. Characterization and primary structure of a second thioredoxin from the green alga, Chlamydomonas reinhardtii. Eur. J. Biochem. 198: 505–512.

    Google Scholar 

  • Franzen, L.G., Rochaix, J.D. and von Heijne, G. 1990. Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and plant chloroplast presequences. FEBS Lett. 260: 165–168.

    Google Scholar 

  • Gavel, Y. and von Heijne, G. 1990. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 261: 455–458.

    Google Scholar 

  • Gietl, C. 1992. Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochim. Biophys. Acta 1100: 217–234.

    Google Scholar 

  • Guex, N. and Peitsch, M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18: 2714–2723.

    Google Scholar 

  • Guex, N., Diemand, A. and Peitsch, M.C. 1999. Protein modelling for all. Trends Biochem. Sci. 24: 364–367.

    Google Scholar 

  • Harris, E. 1989. The Chlamydomonas Sourcebook. Academic Press, New York.

    Google Scholar 

  • Heldt, H.W. and Flügge, U.I. 1987. Subcellular transport of metabolites in plant cells. In: P.K. Stumpf and E.E. Conn (Eds.) The Biochemistry of Plants, vol. 11, Academic Press, New York, pp. 49–85.

    Google Scholar 

  • Issakidis, E., Miginiac-Maslow, M., Decottignies, P., Jacquot, J.P., Cretin, C. and Gadal, P. 1992. Site-directed mutagenesis reveals the involvement of an additional thioredoxin-dependent regulatory site in the activation of recombinant Sorghum leaf NADP-malate dehydrogenase. J. Biol. Chem. 267: 21577–21583.

    Google Scholar 

  • Issakidis, E., Saarinen, M., Decottignies, P., Jacquot, J.P., Cretin, C., Gadal, P. and Miginiac-Maslow, M. 1994. Identification and characterization of the second regulatory disulfide bridge of recombinant Sorghum leaf NADP-malate dehydrogenase. J. Biol. Chem. 269: 3511–3517.

    Google Scholar 

  • Jacquot, J.-P., Stein, M., Lemaire, S., Decottignies, P., Le Maréchal, P. and Lancelin, J.-M. 1998. Molecular aspects of components of the ferredoxin/thioredoxin systems. In: J.D. Rochaix, M. Goldschmidt-Clermont and S. Merchant (Eds.) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 501–514.

    Google Scholar 

  • Johansson, K., Ramaswamy, S., Saarinen, M., Lemaire-Chamley, M., Issakidis-Bourguet, E., Miginiac-Maslow M. and Eklund, H. 1999. Structural basis for light activation of a chloroplast enzyme: the structure of Sorghum NADP-malate dehydrogenase in its oxidized form. Biochemistry 38: 4319–4326.

    Google Scholar 

  • Kindle, K.L. 1987. Expression of a gene for light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Mol. Biol. 9: 547–563.

    Google Scholar 

  • Krimm, I., Goyer, A., Issakidis-Bourguet, E., Miginiac-Maslow, M. and Lancelin, J.M. 1999. Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADP-malate dehydrogenase provides a structural basis for the relief of autoinhibition. J. Biol. Chem. 274: 34539–34542.

    Google Scholar 

  • Lemaire, M., Schmitter, J.M., Issakidis, E., Miginiac-Maslow, M. and Gadal, P. 1994. Essential histidine at the active site of sorghum leaf NADP-dependent malate dehydrogenase. J. Biol. Chem. 269: 27291–27294.

    Google Scholar 

  • Luchetta, P., Cretin, C. and Gadal, P. 1990. Structure and characterization of the Sorghum vulgare gene encoding NADP-malate dehydrogenase. Gene 89: 171–177.

    Google Scholar 

  • Ocheretina, O. and Scheibe, R. 1997. Cloning and sequence analysis of cDNAs encoding plant cytosolic malate dehydrogenase. Gene 199: 145–148.

    Google Scholar 

  • Ocheretina, O., Haferkamp, I., Tellioglu, H. and Scheibe, R. 2000. Light-modulated NADP-malate dehydrogenases from mossfern and green algae: insights into evolution of the enzyme's regulation. Gene 258: 147–154.

    Google Scholar 

  • Quesada, A., Galván, A., Schnell, R., Lefebvre, P.A. and Fernández, E. 1993. Five nitrate assimilation related loci are clustered in Chlamydomonas reinhardtii. Mol. Gen. Genet. 240: 387–394.

    Google Scholar 

  • Quesada, A. and Fernández, E. 1994. Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii. Plant Mol. Biol. 24: 185–194.

    Google Scholar 

  • Quesada, A., Gómez, I., Fernández, E. 1998. Clustering of the nitrite reductase gene and a light-regulated gene with nitrate assimilation loci in Chlamydomonas reinhardtii. Planta 206: 259–265.

    Google Scholar 

  • Quesada, A., Gómez-García, I. and Fernández, E. 2000. Involvement of chloroplast and mitochondrial redox valves in nitrate assimilation. Trends Plant Sci. 5: 465–466.

    Google Scholar 

  • Reng, W., Riessland, R., Scheibe, R. and Jaenicke, R. 1993. Cloning, site-specific mutagenesis, expression and characterisation of full-length chloroplast NADP-malate dehydrogenase from Pisum sativum. Eur. J. Biochem. 217: 189–197.

    Google Scholar 

  • Ruelland, E., Lemaire-Chamley, M., Le Marechal, P., Issakidis-Bourguet, E., Djukic, N. and Miginiac-Maslow, M. 1997. An internal cysteine is involved in the thioredoxin-dependent activation of Sorghum leaf NADP-malate dehydrogenase. J. Biol. Chem. 272: 19851–19857.

    Google Scholar 

  • Ruelland, E., Johansson, K., Decottignies, P., Djukic, N. and Miginiac-Maslow, M. 1998. The autoinhibition of Sorghum NADP-malate dehydrogenase is mediated by a C-terminal negative charge. J. Biol. Chem. 273: 33482–33488.

    Google Scholar 

  • Ruelland, E. and Miginiac-Maslow, M. 1999. Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci. 4: 136–141.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Scheibe, R. 1987. NADP-malate dehydrogenase in C3-plants: regulation and role of a light-activated enzyme. Physiol. Plant. 71: 393–400.

    Google Scholar 

  • Schepens, I., Johansson, K., Decottignies, P., Gillibert, M., Hirasawa, M., Knaff, D.B. and Miginiac-Maslow, M. 2000a. Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity. J. Biol. Chem. 275: 20996–21001.

    Google Scholar 

  • Schepens, I., Decottignies, P., Ruelland, E., Johansson, K. and Miginiac-Maslow, M. 2000b. The dimer contact area of sorghum NADP-malate dehydrogenase: role of aspartic 101 in dimer stability and catalytic activity. FEBS Lett. 471: 240–244.

    Google Scholar 

  • Silflow, C.D. 1998. Organization of the nuclear genome. In: J.D. Rochaix, M. Goldschmidt-Clermont and S. Merchant (Eds.) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 25–40.

    Google Scholar 

  • von Heijne, G., Steppuhn, J. and Herrmann, R.G. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. J. Biochem. 180: 535–545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, I., Merchán, F., Fernández, E. et al. NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling. Plant Mol Biol 48, 211–221 (2002). https://doi.org/10.1023/A:1013338407266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013338407266

Navigation