Skip to main content
Log in

Enhanced Bioavailability of Calcitonin Formulated with Alkylglycosides Following Nasal and Ocular Administration in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to characterize the effects of alkylglycosides on the bioavailability of calcitonin following nasal and ocular administration.

Methods. A salmon calcitonin specific radioimmunoassay kit was used to measure calcitonin levels in anesthetized rats at various times after nasal or ocular administration of calcitonin formulated with saline or with octylmaltoside, a medium chain length alkylglycoside or tetradecylmaltoside, a long chain alkylglycoside. The extent of calcitonin absorption was determined directly from the plasma calcitonin level-time curve and the bioavailability of calcitonin was determined from the area under the plasma calcium level-time curve. The calcium level was determined using a colorimetric method.

Results. When the nasal formulation contained calcitonin plus saline or 0.125% octylmaltoside, little or no calcitonin was absorbed. However, plasma calcitonin levels were increased and plasma calcium levels were decreased when the nasal formulation contained calcitonin plus 0.125% or 0.25% tetradecylmaltoside. Maximal calcitonin levels were observed 7.5-10 min after nasal administration of the formulation. Ocular administration of calcitonin formulated with tetradecylmaltoside also resulted in calcitonin absorption, but less calcitonin absorption was found after ocular administration than after nasal administration.

Conclusion. The experimental data indicate that tetradecylmaltoside, but not octylmaltoside, can be effectively used to enhance the bioavailability of nasally and ocularly administered calcitonin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. W. Chien. Novel drug delivery systems. 5th Ed. Marcel Dekker, New York, 1993.

    Google Scholar 

  2. R. Marcus. Treatment of osteoporosis. In S. Carruthers, B. Hoffman, K. L Melmon, D. Nierenberg (eds) Melmon and Morrelli's Clinical Pharmacology, 4th ed. McGraw-Hill, New York, 2000, pp. 703-711.

    Google Scholar 

  3. O. Torring, E. Bucht, U. Sjostedt, and H. E. Sjoberg. Salmon calcitonin treatment by nasal spray in primary hyperparathyroidism. Bone 12: 311-316 (1991).

    Google Scholar 

  4. Miacalcin® Nasal Spray. Novartis Pharmaceutical Corp. East Hanover, New Jersey, (1998).

  5. N. G. M. Schipper, J. G. Romeijn, R. J. Verhoef, and F. W. H. M. Merkus. Hypocalcemic effect of salmon calcitonin following single and repeated nasal and intravenous administration in young rabbits. Calcif. Tissue Int. 54:50-55 (1994).

    Google Scholar 

  6. N. G. M. Schipper, J. C. Verhoef, S. G. Romeijn, and F. W. H. M. Merkus Methylated-ß-cyclodextrins are able to improve the nasal absorption of salmon calcitonin. Calcif. Tissue Int. 56:280-282 (1995).

    Google Scholar 

  7. S. Kagatani, T. Shinoda, M. Fukui, T. Ohmura, S. Hasumi, and T. Sonobe. Enhancement of nasal salmon calcitonin absorption by lauroylcarnitine chloride in rats. Pharm. Res. 13:739-743 (1996).

    Google Scholar 

  8. G. Yetkin, N. Celebi, I. Agabeyoglu, and N. Gokcora. The effect of dimethyl-ß-cyclodextrin and sodium taurocholate on the nasal bioavailability of salmon calcitonin in rabbits. STP Pharma Sci. 3:249-252 (1999).

    Google Scholar 

  9. K. Morimoto, K. Morisaka, and A. Kamada. Enhancement of nasal absorption of insulin and calcitonin using polyacrylic acid gel. J. Pharm. Pharmacol. 37:134-136 (1985).

    Google Scholar 

  10. D. J. Pillion, J. A. Atchison, R. X. Wang, and E. Meezan. Alkyglycosides enhance systemic absorption of insulin applied topically to the rat eye. J. Pharmacol. Exp. Ther. 271:1274-1280 (1994).

    Google Scholar 

  11. D. J. Pillion, J. A. Atchison, C. Gargiulo, R. X. Wang, P. Wang, and E. Meezan. Insulin delivery in nosedrops: New formulations containing alkylglycosides. Endocrinology 135:2386-2391 (1994).

    Google Scholar 

  12. D. J. Pillion, P. Wang, J. Yorks, P. McCann, and E. Meezan. Systemic absorption of insulin and glucagon applied topically to the eyes of rats and a diabetic dog. J. Ocul. Pharmacol. Ther. 11:283-295 (1995).

    Google Scholar 

  13. G. C. Y. Chiou and C. Y. Chuang. Improvement of systemic absorption of insulin through eyes with absorption enhancers. J. Pharm. Sci. 78:815-818 (1989).

    Google Scholar 

  14. D. J. Pillion, J. D. Bartlett, E. Meezan, M. Yang, R. J. Crain, and W. E. Grizzle. Systemic absorption of insulin delivered topically to the rat eye. Invest. Ophthalmol. Vis. Sci. 32:3021-3027 (1991).

    Google Scholar 

  15. T. Uchiyama, T. Sugiyama, Y. S. Quan, A. Kotani, N. Okada, T. Fujita, S. Muranishi, and A. Yamamoto. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: Their intestinal mucosal toxicity and absorption-enhancing mechanism of lauryl-ß-D-maltopyranoside. J. Pharm. Pharmacol. 51:1241-1250 (1999).

    Google Scholar 

  16. D. J. Pillion, S. Hosmer, and E. Meezan. Dodecylmaltoside-mediated nasal and ocular absorption of Lyspro-insulin: Independence of surfactant action from multimer dissociation. Pharm. Res. 15:1641-1643 (1998).

    Google Scholar 

  17. W. J. Xia and H. Onyuksel. Mechanistic studies on surfactant-induced membrane permeability enhancement. Pharm. Res. 17:312-912 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahsan, F., Arnold, J., Meezan, E. et al. Enhanced Bioavailability of Calcitonin Formulated with Alkylglycosides Following Nasal and Ocular Administration in Rats. Pharm Res 18, 1742–1746 (2001). https://doi.org/10.1023/A:1013330815253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013330815253

Navigation