Skip to main content
Log in

Monoclonal Antibodies to Vascular Endothelial Growth Factor (VEGF) And the VEGF Receptor, FLT-1, Inhibit the Growth of C6 Glioma in a Mouse Xenograft

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Monoclonal antibodies raised to peptide sequences of vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibited the growth of C6 tumors growing subcutaneously in nude mice. Immunohistochemical analysis demonstrated antibody targeting of blood vessels, tumor cells, and macrophages. A control antibody demonstrated no growth inhibition or tumor uptake. An antibody to FLT-1 impaired microvascular maturation and diminished the accumulation of tumor infiltrating macrophages. The antibodies demonstrated affinity for microvasculature and tumor cells in immunohistochemistry of human glioblastoma multiforme. Targeting VEGF and its receptors has potential in the treatment of tumors of the central nervous system. FLT-1 presents an attractive target due to its presence on multiple cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Senger DR, Vandewater L, Brown LF, Jackman RW, Dvorak AM, Dvorak HF: Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12: 303–324, 1993

    Google Scholar 

  2. Hlatky L, Tsionou C, Hahnfeldt P, Coleman DN: Mammary fibroblasts may influence breast tumor angiogenesis via hypoxia – induced vascular endothelial growth factor up-regulation and protein expression. Cancer Res 54: 6083–6086, 1994

    Google Scholar 

  3. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia – initiated angiogenesis. Nature (London) 359: 843–845, 1992

    Google Scholar 

  4. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J: Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84: 1470–1478, 1989

    Google Scholar 

  5. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science (Washington DC) 246: 1309–1312, 1989

    Google Scholar 

  6. Ferrara N, Houck K, Jakeman L, Leung DW: Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13: 18–32, 1992

    Google Scholar 

  7. Nagy JA, Meyers MS, Masse EM, Herzberg KT, Dvorak HF: Pathogenesis of ascites tumor growth: fibrinogen influx and fibrin accumulation in tissues lining the peritoneal cavity. Cancer Res 55: 369–375, 1995

    Google Scholar 

  8. Melder RJ, Koenig G, Witwer B, Safabakhsh N, Munn LL, Jain RK: During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 9: 992–997, 1996

    Google Scholar 

  9. Clauss M, Gerlach M, Gerlach H, Brett J, Wang F, Familletti PC, Pan YC, Olander JV, Connolly DT, Stern D: Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172: 1535–1545, 1999

    Google Scholar 

  10. Berkman RA, Merrill MJ, Reinhold WC, Monacci WT, Saxena A, Clark WC, Robertson JT, Ali IU, Oldfield EH: Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91: 153–159, 1993

    Google Scholar 

  11. Machein MR, Plate KH: VEGF in brain tumors. J Neuro-Oncol 50: 109–120, 2000

    Google Scholar 

  12. Hatva E, Kaipainen A, Mentula P, Jaaskelainen J, Paetau A, Haltia M, Alitalo K: Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 146: 368–378, 1995

    Google Scholar 

  13. Kalkanis SN, Carroll RS, Zhang J, Zamani AA, Black PM: Correlation of vascular endothelial growth factor messenger RNAexpression with peritumoral vasogenic cerebral edema in meningiomas. J Neurosurg 85(6): 1095–1101, 1996

    Google Scholar 

  14. Devries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT: The FMS-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science (Washington DC) 255: 989–991, 1992

    Google Scholar 

  15. Termin BI, Carrion ME, Kovals E, Rasmussen BA, Eddy RL, Shows JB: Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6: 1677–1683, 1991

    Google Scholar 

  16. Mathews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR: A receptor tyrosine kinase cDNA isolated from a poplulation of enriched primativc hematopoietic cells and exhibiting close genetic linkage to C-kit. Proc Natl Acad Sci USA 88: 9026–9030, 1991

    Google Scholar 

  17. Carroll RS, Zhang J, Bello L, Melnick MB, Maruyama T, McL Black P: KDR activation in astrocytic neoplasms. Cancer 86(7): 1335–1334, 1999

    Google Scholar 

  18. Shen H, Clauss M, Ryan J, Schmidt AM, Tijburg P, Borden L, Connolly D, Stern D, Kao J: Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood 81(10): 2767–2773, 1993

    Google Scholar 

  19. Herold-Mende C, Steiner HH, Andl T, Riede D, Bottler A, Reisser C, Fusenig NE, Mueller MM: Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells. Lab Invest 79(12): 1573–1582, 1999

    Google Scholar 

  20. Speirs V, Atkin SL: Production of VEGF and expression of the VEGF receptors FLT-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumors. Br J Cancer 80(5–6): 898–903, 1999

    Google Scholar 

  21. Ferrer FA, Miller LJ, Lindquist R, Kowalczyk P, Laudone VP, Albertston PC, Kreutzer DL: Expression of vascular endothelial growth factor receptors in human prostate cancer. Urology 54(3): 567–572, 1999

    Google Scholar 

  22. Dias S, Hattori K, Zhu Z, Heissib B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, Hicklin DJ, Witte L, Moore MA, Rafii S: Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106(4): 511–521, 2000

    Google Scholar 

  23. Plate KH, Breier G, Millauer B, Ullrich A, Risau W: Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53(23): 5822–5827, 1993

    Google Scholar 

  24. Presta LG, Chen H, O'Conner SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N: Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57: 4593–4599, 1997

    Google Scholar 

  25. Prewett M, Huber J, Li Y, Santiago A, O'Conner W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin DJ: Antivascular endothelial growth Factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59: 5209–5218, 1999

    Google Scholar 

  26. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Curwen JO, Hennequin LF, Thomas AP, Stokes ESE, Curry B, Richmond GHP, Wadsworth PF: ZD4190: An orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res 60: 970–975, 2000

    Google Scholar 

  27. Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM: Dominant negative inhibition of FLK-1 suppresses the growth of many tumor types in vivo. Cancer Res 56(7): 1615–1620, 1996

    Google Scholar 

  28. Parry TJ, Cushman C, Gallegus AM, Agrawal AB, Richardson M, Andrews LE, Maloney L, Mokler VR, Wincott FE, Pavco PA: Bioactivity of anti-angiogenic ribozymes targeting FLT-1 and KDR mRNA. Nucleic Acids Res 27(13): 2569–2577, 1999

    Google Scholar 

  29. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science (Washington DC) 246: 1306–1308, 1989

    Google Scholar 

  30. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsoshime H, Sato M: Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (FLT) closely related to the FMS family. Oncogene 5: 519–524, 1990

    Google Scholar 

  31. Sehested M, Hou-Jensen K: Factor VIII-related antigen is an endothelial cell marker in benign and malignant diseases. Virchows Arch A Pathol Anat Histol 391: 217–225, 1981

    Google Scholar 

  32. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G: Tumor angiogenesis: a new significant and independent prognostic indicator in earlystage breast carcinoma. J Natl Cancer Inst 84: 1875–1887, 1992

    Google Scholar 

  33. Folkman J: What is the evidence that tumors are angiogenesis-dependent? J Natl Cancer Inst 82: 4–6, 1990

    Google Scholar 

  34. Barleon B, Siemeister G, Martiny-Baron G, Weindel K, Herzog C, Marme D: Vascular endothelial growth factor up-regulates its receptor FMS-like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res 57: 5421–5425, 1997

    Google Scholar 

  35. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature (London) 362: 841–844, 1993

    Google Scholar 

  36. Gorski DH, Beckett M, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, Seetharam S, Koons A, Hari DM, Kufe DW, Weichselbaum RR: Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59: 3374–3378, 1999

    Google Scholar 

  37. Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26): 1650–1659, 1986

    Google Scholar 

  38. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikesaki K, Fukui M, Iwaki T, Kuwano M: Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5(5): 1107–1113, 1999

    Google Scholar 

  39. Sunderkotter C, Steinbrink K, Goebler M, Bhardwaj R, Soro C: Macrophages and angiogenesis. J Leukoc Biol 55(3): 410–422, 1994

    Google Scholar 

  40. Lewis CE, Leek R, Harris A, McGee JO'D: Cytokine regulation of angiogenesis in breast cancer: the role of tumor – associated macrophages. J Leukoc Biol 57: 747–751, 1995

    Google Scholar 

  41. Roth P, Stanley ER: The biology of CSF-1 and its receptor. Curr Topics Microl Immunol 181: 141–167, 1992

    Google Scholar 

  42. Barleon B, Sozzani S, Zhou D, Weich HA, Montovani A, Marme D: Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor FLT-1. Blood 87(8) 3336–3343, 1996

    Google Scholar 

  43. Guerrin M, Moukadiri H, Chollet P, Moro F, Dutt K, Malecaze F, Plouet J: Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J Cell Physiol 164(2): 385–394, 1995

    Google Scholar 

  44. Silverman WF, Krum JM, Mani N, Rosenstein JM: Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 90(4): 1529–1541, 1999

    Google Scholar 

  45. Speirs V, Atkin SL: Production of VEGF and expression of the VEGF receptors FLT-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours. Br J Cancer 80(5–6): 898–903, 1999

    Google Scholar 

  46. Hahn D, Simak R, Steiner GE, Handisurya A, Susani M, Marberger M: Expression of the VEGF-receptor FLT-1 in benign, premalignant, and malignant prostate tissues. J Urol 164(2): 506–510, 2000

    Google Scholar 

  47. Herold-Mende C, Andi J, Laemmler F, Reisser C, Mueller MM: Functional expression of vascular endothelial growth factor receptor FLT-1 on squamous cell carcinoma of the head and neck. HNO 47(8): 706–711, 1999

    Google Scholar 

  48. Fong GH, Rossant J, Gertsenstein M, Breitman ML: Role of theFLT-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature (London) 376: 66–70, 1995

    Google Scholar 

  49. Stohrer M, Boucher Y, Stangassinger M, Jain RK: Oncotic pressure in solid tumors is elevated. Cancer Res 60(15): 4251–4255, 2000

    Google Scholar 

  50. Burrows FJ, Thorpe PE: Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 90: 8996–9000, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanik, D.F., Fellows, W.K., Rizkalla, L.R. et al. Monoclonal Antibodies to Vascular Endothelial Growth Factor (VEGF) And the VEGF Receptor, FLT-1, Inhibit the Growth of C6 Glioma in a Mouse Xenograft. J Neurooncol 55, 91–100 (2001). https://doi.org/10.1023/A:1013329832067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013329832067

Navigation