Skip to main content
Log in

Molecular cloning, expression and characterization of tropinone reductase II, an enzyme of the SDR family in Solanum tuberosum (L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Calystegines are nortropane alkaloids that are found in Solanaceae containing the classical tropane alkaloids hyoscyamine and scopolamine, and in other Solanaceae such as potato, Solanum tuberosum (L.). Calystegines are assumed to derive from the classical tropane alkaloid pathway. We isolated a cDNA from S. tuberosum with high homology to the pseudotropine-forming tropinone reductase (TRII), which presents as the first putative metabolite specific to calystegines. The equivalent amino acid sequence shows typical motifs of a short-chain dehydrogenase (SDR). The recombinant TRII protein expressed in Escherichia coli catalyzes pseudotropine formation from tropinone with a K m value, a pH optimum, substrate and co-substrate preferences similar to those reported for the TRII enzymes from other Solanaceae species. The gene is expressed in roots, tubers and aerial parts of potato. The distribution of the TRII transcript in comparison with the calystegine concentrations in the tissues suggests transport of calystegines or their precursors between potato organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano, N., Nash, R.J., Molyneux, R.J. and Fleet G.W. 2000. Sugarmimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutical application. Tetrahedron Asymmetry 11: 1645–1680.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Brandstädter, J., Rossbach, C. and Theres, K. 1993. The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta 192: 69–74.

    Google Scholar 

  • Chen, Z., Jiang, J.C., Lin, Z.G., Lee, W.R., Baker, M.E. and Chang, S.H. 1993. Site-specific mutagenesis of Drosophila alcohol dehydrogenase: evidence for involvement of tyrosine-152 and lysine-156 in catalysis. Biochemistry 32: 3342–3346.

    Google Scholar 

  • Dräger, B. and Schaal, A. 1994. Tropinone reduction in Atropa belladonna root cultures. Phytochemistry 35: 1441–1447.

    Google Scholar 

  • Dräger, B., Hashimoto, T. and Yamada, Y. 1988. Purification and characterization of pseudotropine forming tropinone reductase from Hyoscyamus niger root cultures. Agric. Biol. Chem. 52: 2663–2668.

    Google Scholar 

  • Dräger, B., Funck, C., Hoehler, A., Mrachatz, G., Nahrstedt, A., Portsteffen, A., Schaal, A. and Schmidt, R. 1994. Calystegines as a new group of tropane alkaloids in Solanaceae. Plant Cell Tissue Organ Cult. 38: 235–240.

    Google Scholar 

  • Dräger, B., van Almssick, A. and Mrachatz, G. 1995. Distribution of calystegines in several Solanaceae. Planta Med. 61: 577–579.

    Google Scholar 

  • Goldmann, A., Milat, M.L., Ducrot, P.H., Lallemand, J.Y., Maille, M., Lepingle, A., Charpin, I. and Tepfer, D. 1990. Tropane derivatives from Calystegia sepium. Phytochemistry 29: 2125–2128.

    Google Scholar 

  • Griffin, W.J. and Lin, G.D. 2000. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53: 623–637.

    Google Scholar 

  • Hashimoto, T., Nakajima, K., Ongena, G. and Yamada, Y. 1992. Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus niger. Plant Physiol. 100: 836–845.

    Google Scholar 

  • Jörnvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J. and Ghosh, D. 1995. Short-chain dehydrogenases/reductases (SDR). Biochemistry 34: 6003–6013.

    Google Scholar 

  • Keiner, R. and Dräger, B. 2000. Calystegine distribution in potato (Solanum tuberosum) tubers and plants. Plant Sci. 150: 171–179.

    Google Scholar 

  • Nakajima, K., Hashimoto, T. and Yamada, Y. 1993a. Two tropinone reductases with different stereospecificities are short chain dehydrogenases evolved from a common ancestor. Proc. Natl. Acad. Sci. USA 90: 9591–9595.

    Google Scholar 

  • Nakajima, K., Hashimoto, T. and Yamada, Y. 1993b. cDNA encoding tropinone reductase-II from Hyoscyamus niger. Plant Physiol. 103: 1465–1466.

    Google Scholar 

  • Nakajima, K., Yamashita, A., Akama, H., Nakatsu, T., Kato, H., Hashimoto, T., Oda, J. and Yamada, Y. 1998. Crystal structures of two tropinone reductases: different reaction stereospecificities in the same protein fold. Proc. Natl. Acad. Sci. USA 95: 4876–4881.

    Google Scholar 

  • Nakajima, K., Oshita, Y., Kaya, M., Yamada, Y. and Hashimoto, T. 1999a. Structures and expression patterns of two tropinone reductase genes from Hyoscyamus niger. Biosci. Biotechnol. Biochem. 63: 1756–1764.

    Google Scholar 

  • Nakajima, K., Oshita, Y., Yamada, Y. and Hashimoto, T. 1999b. Insight into the molecular evolution of two tropinone reductases. Biosci. Biotechnol. Biochem. 63: 1819–1822.

    Google Scholar 

  • Nakajima, K., Kato, H., Oda, J., Yamada, Y. and Hashimoto, T. 1999c. Site-directed mutagenesis of putative substrate-binding residues reveals a mechanism controlling the different stereospecificities of two tropinone reductases. J. Biol. Chem. 274: 16563–16568.

    Google Scholar 

  • Nakanishi, M., Kakumoto, M., Matsuura, K., Deyashiki, Y., Tanaka, N., Nonaka, T., Mitsui, Y. and Hara, A. 1996. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: sitedirected mutagenesis and kinetic analyses. J. Biochem. (Tokyo) 120: 257–263.

    Google Scholar 

  • Nakanishi, M., Matsuura, K., Kaibe, H., Tanaka, N., Nonaka, T., Mitsui, Y. and Hara, A. 1997. Switch of coenzyme specificity of mouse lung carbonyl reductase by substitution of threonine 38 with aspartic acid. J. Biol. Chem. 272: 2218–2222.

    Google Scholar 

  • Persson, B., Krook, M. and Jörnvall, H. 1991. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem. 200: 537–543.

    Google Scholar 

  • Persson, B., Krook, M. and Jornvall, H. 1995. Short-chain dehydrogenases/reductases. Adv. Exp. Med. Biol. 372: 383–395.

    Google Scholar 

  • Portsteffen, A., Dräger, B. and Nahrstedt, A. 1992. Two tropinone reducing enzymes from Datura stramonium transformed root cultures. Phytochemistry 31: 1135–1138.

    Google Scholar 

  • Portsteffen, A., Dräger, B. and Nahrstedt, A. 1994. The reduction of tropinone in Datura stramonium root cultures by two specific reductases. Phytochemistry 37: 391–400.

    Google Scholar 

  • Reinbothe, C., Tewes, A., Luckner, M. and Reinbothe, S. 1992. Differential gene expression during somatic embryogenesis in Digitalis lanata analyzed by in vivo and in vitro protein synthesis. Plant J. 2: 917–926.

    Google Scholar 

  • Scholl, Y., Höke, D. and Dräger, B. Calystegines in Calystegia sepium derive from the tropane alkaloid pathway. Phytochemistry, in press.

  • Suzuki, K., Yamada, Y. and Hashimoto, T. 1999a. Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol. 40: 289–297.

    Google Scholar 

  • Suzuki, K., Yun, D.J., Chen, X.Y., Yamada, Y. and Hashimoto, T. 1999b. An Atropa belladonna hyoscyamine 6?-hydroxylase gene is differentially expressed in the root pericycle and anthers. Plant Mol. Biol. 40: 141–152.

    Google Scholar 

  • Tanaka, N., Nonaka, T., Nakanishi, M., Deyashiki, Y., Hara, A. and Mitsui, Y. 1996. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 Å resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure 4: 33–45.

    Google Scholar 

  • Witte, L., Müller, K. and Arfmann, H.A. 1987. Investigation of the alkaloid pattern of Datura inoxia plants by capillary gas-liquid chromatography-mass spectrometry. Planta Med. 53: 192–197.

    Google Scholar 

  • Yamashita, A., Kato, H., Wakatsuki, S., Tomizaki, T., Nakatsu, T., Nakajima, K., Hashimoto, T., Yamada, Y. and Oda, J. 1999. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 Å resolution: implication for stereospecific substrate binding and catalysis. Biochemistry 38: 7630–7637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keiner, R., Kaiser, H., Nakajima, K. et al. Molecular cloning, expression and characterization of tropinone reductase II, an enzyme of the SDR family in Solanum tuberosum (L.). Plant Mol Biol 48, 299–308 (2002). https://doi.org/10.1023/A:1013315110746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013315110746

Navigation