Skip to main content
Log in

A Thermodynamic Study of 1-Propanol–Glycerol–H2O at 25°C: Effect of Glycerol on Molecular Organization of H2O

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol–glycerol–H2O at 25°C. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization of H2O. The glycerol molecules do not exert a hydrophobic effect on H2O. Rather, the hydroxyl groups of glycerol, perhaps by forming clusters via its alkyl backbone with hydroxyl groups pointing outward, interact with H2O so as to reduce the characteristics of liquid H2O. The global hydrogen bond probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy were evaluated and these data suggest a possibility that the interaction is mediated through H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. E. Desnoyers, G. Perron, L. Avedikian, and J.-P. Morel, J. Solution Chem. 5, 631 (1976).

    Google Scholar 

  2. G. Barone, Thermochim. Acta 162, 17 (1990).

    Google Scholar 

  3. P. J. Cheek and T. H. Lilley, J. Chem. Soc. Faraday Trans. I 84, 1927 (1988).

    Google Scholar 

  4. F. Franks, M. Pedley, and D. Reid, J. Chem. Soc. Faraday Trans. I 72, 359 (1971).

    Google Scholar 

  5. H. Piekarski and G. Somsen, Can. J. Chem. 64, 1721 (1986).

    Google Scholar 

  6. W. G. McMillan Jr. and J. E. Mayer, J. Chem. Phys. 13, 276 (1945).

    Google Scholar 

  7. E. C. H. To, P. Westh, Ch. Trandum, Aa. Hvidt, and Y. Koga, Fluid Phase Equilbr. 171, 151 (2000).

    Google Scholar 

  8. Y. Koga, J. Phys. Chem. 100, 5172 (1996).

    Google Scholar 

  9. Y. Koga, J. Crystall. Soc. Jpn 37, 172 (1995).

    Google Scholar 

  10. E. F. Casassa and H. Eisenberg, Advan. Protein Chem. 19, 287 (1964).

    Google Scholar 

  11. S. N. Timasheff, Advan. Protein Chem. 51, 355 (1998).

    Google Scholar 

  12. R. Lumry and S. Rejender, Biopolymers 9, 1125 (1970).

    Google Scholar 

  13. Y. Koga, Can. J. Chem. 66, 1187 (1988).

    Google Scholar 

  14. S. H. Tanaka, H. I. Yoshihara, A. W.-C. Ho, F. W. Lau, P. Westh, and Y. Koga, Can. J. Chem. 74, 713 (1996).

    Google Scholar 

  15. M. I. Davis, M. C. Molina, and G. Douheret, Thermochim. Acta 131, 153 (1988).

    Google Scholar 

  16. Y. Koga, Can. J. Chem. 77, 2039 (1999).

    Google Scholar 

  17. Y. Koga, Chem. Phys. Lett. 240, 340 (1995).

    Google Scholar 

  18. Y. Koga and P. Westh, Bull. Chem. Soc. Jpn. 69, 1505 (1996).

    Google Scholar 

  19. K. Tamura, A. Osaki, and Y. Koga, Phys. Chem. Chem. Phys. 1, 121 (1999).

    Google Scholar 

  20. Y. Koga and K. Tamura, Netsusokutei (J. Calori. Thermal Anal.) 27, 195 (2000).

    Google Scholar 

  21. Ch. Trandum, P. Westh, C. A. Haynes, and Y. Koga, J. Phys. Chem. B 102, 5182 (1998).

    Google Scholar 

  22. Y. Koga, P. Westh, Ch. Trandum, and C. A. Haynes, Fluid Phase Equilbr. 136, 207 (1997).

    Google Scholar 

  23. P. Westh and Y. Koga, J. Phys. Chem. B101, 5755 (1997).

    Google Scholar 

  24. P. Westh and Y. Koga, J. Phys. Chem. 100, 433 (1996).

    Google Scholar 

  25. E. C. H. To, J. Hu, C. A. Haynes, and Y. Koga, J. Phys. Chem. B 102, 10958 (1998).

    Google Scholar 

  26. H. Matsuo, E. C. H. To, D. C. Y. Wong, S. Sawamura, and Y. Koga, J. Phys. Chem. B 103, 2981 (1999).

    Google Scholar 

  27. H. E. Stanley and J. Teixeira, J. Chem. Phys. 73, 3404 (1980).

    Google Scholar 

  28. Y. Koga, P. Westh, S. Sawamura, and Y. Taniguchi, J. Chem. Phys. 105, 2028 (1996).

    Google Scholar 

  29. A. Idrissi, F. Sokolic, and A. Perera, J. Chem. Phys. 112, 9479 (2000).

    Google Scholar 

  30. J. A. White, E. Schwegler, G. Galli, and F. Gygi, J. Chem. Phys. 113, 4668 (2000).

    Google Scholar 

  31. E. C. H. To, J. V. Davies, M. Tucker, P. Westh, Ch. Trandum, K. S. H. Suh, and Y. Koga, J. Solution Chem. 28, 1137 (1999).

    Google Scholar 

  32. C. Dethelfsen, P. G. Sorensen, and Aa. Hvidt, J. Solution Chem. 13, 191 (1984).

    Google Scholar 

  33. J. Bernhardt and H. Pauly, J. Phys. Chem. 84, 158 (1980).

    Google Scholar 

  34. Y. Koga, W. W. Y. Siu, and T. Y. H. Wong, J. Phys. Chem. 94, 3879 (1990).

    Google Scholar 

  35. P. Westh, C. A. Haynes, and Y. Koga, J. Phys. Chem. B102, 4982 (1998).

    Google Scholar 

  36. J. Hu, W. M. Chiang, P. Westh, D. H. C. Chen, C. A. Haynes, and Y. Koga, Bull. Chem. Soc. Jpn. 74, 809 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, M.T., Westh, P., Davies, J.V. et al. A Thermodynamic Study of 1-Propanol–Glycerol–H2O at 25°C: Effect of Glycerol on Molecular Organization of H2O. Journal of Solution Chemistry 30, 1007–1028 (2001). https://doi.org/10.1023/A:1013303427259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013303427259

Navigation